TY - JOUR
T1 - A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks
AU - Ingole, Vikram S.
AU - Kshirsagar, Ujwala A.
AU - Singh, Vikash
AU - Yadav, Manish Varun
AU - Krishna, Bipin
AU - Kumar, Roshan
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2025/1
Y1 - 2025/1
N2 - Soybean yield prediction is one of the most critical activities for increasing agricultural productivity and ensuring food security. Traditional models often underestimate yields because of limitations associated with single data sources and simplistic model architectures. These prevent complex, multifaceted factors influencing crop growth and yield from being captured. In this line, this work fuses multi-source data—satellite imagery, weather data, and soil properties—through the approach of multi-modal fusion using Convolutional Neural Networks and Recurrent Neural Networks. While satellite imagery provides information on spatial data regarding crop health, weather data provides temporal insights, and the soil properties provide important fertility information. Fusing these heterogeneous data sources embeds an overall understanding of yield-determining factors in the model, decreasing the RMSE by 15% and improving R2 by 20% over single-source models. We further push the frontier of feature engineering by using Temporal Convolutional Networks (TCNs) and Graph Convolutional Networks (GCNs) to capture time series trends, geographic and topological information, and pest/disease incidence. TCNs can capture long-range temporal dependencies well, while the GCN model has complex spatial relationships and enhanced the features for making yield predictions. This increases the prediction accuracy by 10% and boosts the F1 score for low-yield area identification by 5%. Additionally, we introduce other improved model architectures: a custom UNet with attention mechanisms, Heterogeneous Graph Neural Networks (HGNNs), and Variational Auto-encoders. The attention mechanism enables more effective spatial feature encoding by focusing on critical image regions, while the HGNN captures interaction patterns that are complex between diverse data types. Finally, VAEs can generate robust feature representation. Such state-of-the-art architectures could then achieve an MAE improvement of 12%, while R2 for yield prediction improves by 25%. In this paper, the state of the art in yield prediction has been advanced due to the employment of multi-source data fusion, sophisticated feature engineering, and advanced neural network architectures. This provides a more accurate and reliable soybean yield forecast. Thus, the fusion of Convolutional Neural Networks with Recurrent Neural Networks and Graph Networks enhances the efficiency of the detection process.
AB - Soybean yield prediction is one of the most critical activities for increasing agricultural productivity and ensuring food security. Traditional models often underestimate yields because of limitations associated with single data sources and simplistic model architectures. These prevent complex, multifaceted factors influencing crop growth and yield from being captured. In this line, this work fuses multi-source data—satellite imagery, weather data, and soil properties—through the approach of multi-modal fusion using Convolutional Neural Networks and Recurrent Neural Networks. While satellite imagery provides information on spatial data regarding crop health, weather data provides temporal insights, and the soil properties provide important fertility information. Fusing these heterogeneous data sources embeds an overall understanding of yield-determining factors in the model, decreasing the RMSE by 15% and improving R2 by 20% over single-source models. We further push the frontier of feature engineering by using Temporal Convolutional Networks (TCNs) and Graph Convolutional Networks (GCNs) to capture time series trends, geographic and topological information, and pest/disease incidence. TCNs can capture long-range temporal dependencies well, while the GCN model has complex spatial relationships and enhanced the features for making yield predictions. This increases the prediction accuracy by 10% and boosts the F1 score for low-yield area identification by 5%. Additionally, we introduce other improved model architectures: a custom UNet with attention mechanisms, Heterogeneous Graph Neural Networks (HGNNs), and Variational Auto-encoders. The attention mechanism enables more effective spatial feature encoding by focusing on critical image regions, while the HGNN captures interaction patterns that are complex between diverse data types. Finally, VAEs can generate robust feature representation. Such state-of-the-art architectures could then achieve an MAE improvement of 12%, while R2 for yield prediction improves by 25%. In this paper, the state of the art in yield prediction has been advanced due to the employment of multi-source data fusion, sophisticated feature engineering, and advanced neural network architectures. This provides a more accurate and reliable soybean yield forecast. Thus, the fusion of Convolutional Neural Networks with Recurrent Neural Networks and Graph Networks enhances the efficiency of the detection process.
UR - http://www.scopus.com/inward/record.url?scp=85216028697&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85216028697&partnerID=8YFLogxK
U2 - 10.3390/computation13010004
DO - 10.3390/computation13010004
M3 - Article
AN - SCOPUS:85216028697
SN - 2079-3197
VL - 13
JO - Computation
JF - Computation
IS - 1
M1 - 4
ER -