TY - JOUR
T1 - A stability indicating method development and validation of a rapid and sensitive RP-HPLC method for Nintedanib and its application in quantification of nanostructured lipid carriers
AU - Velagacherla, Varalakshmi
AU - Nayak, Yogendra
AU - Bhaskar, K. Vijaya
AU - Nayak, Usha Yogendra
N1 - Publisher Copyright:
Copyright: © 2024 Velagacherla V et al.
PY - 2024
Y1 - 2024
N2 - Background: Nintedanib (NTB) is a multiple tyrosine kinase inhibitor, been investigated for many disease conditions like idiopathic pulmonary fibrosis (IPF), systemic sclerosis interstitial lung disease (SSc-ILD) and non-small cell lung cancer (NSCLC). NTB is available as oral capsule formulation, but its ability to detect degradants formed through oxidative, photolytic and hydrolytic processes makes it difficult to quantify. In the current work, a novel reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated. Methods: The developed method is simple, precise, reproducible, stable and accurate. The inherent stability of NTB was evaluated using the proposed analytical method approach and force degradation studies were carried out. NTB was separated chromatographically on the Shimadzu C 18 column as stationary phase (250 ×4.6 mm, 5 µm) using an isocratic elution method with 0.1% v/v triethyl amine (TEA) in HPLC grade water and acetonitrile (ACN) in the ratio 35:65% v/v. The mobile phase was pumped at a constant flow rate of 1.0 ml/min, and the eluent was detected at 390 nm wavelength. Results: NTB was eluted at 6.77±0.00 min of retention time (t R) with a correlation coefficient of 0.999, the developed method was linear in the concentration range of 0.5 µg/ml to 4.5 µg/ml. The recovery rate was found to be in the range of 99.391±0.468% for 1.5 µg/ml concentration. Six replicate standards were determined to have an % RSD of 0.04. Conclusion: The formulation excipients didn’t interfere with the determination of NTB, demonstrating the specificity of the developed method. The proposed approach of the analytical method developed can be used to quantify the amount of NTB present in bulk drugs and pharmaceutical formulations.
AB - Background: Nintedanib (NTB) is a multiple tyrosine kinase inhibitor, been investigated for many disease conditions like idiopathic pulmonary fibrosis (IPF), systemic sclerosis interstitial lung disease (SSc-ILD) and non-small cell lung cancer (NSCLC). NTB is available as oral capsule formulation, but its ability to detect degradants formed through oxidative, photolytic and hydrolytic processes makes it difficult to quantify. In the current work, a novel reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated. Methods: The developed method is simple, precise, reproducible, stable and accurate. The inherent stability of NTB was evaluated using the proposed analytical method approach and force degradation studies were carried out. NTB was separated chromatographically on the Shimadzu C 18 column as stationary phase (250 ×4.6 mm, 5 µm) using an isocratic elution method with 0.1% v/v triethyl amine (TEA) in HPLC grade water and acetonitrile (ACN) in the ratio 35:65% v/v. The mobile phase was pumped at a constant flow rate of 1.0 ml/min, and the eluent was detected at 390 nm wavelength. Results: NTB was eluted at 6.77±0.00 min of retention time (t R) with a correlation coefficient of 0.999, the developed method was linear in the concentration range of 0.5 µg/ml to 4.5 µg/ml. The recovery rate was found to be in the range of 99.391±0.468% for 1.5 µg/ml concentration. Six replicate standards were determined to have an % RSD of 0.04. Conclusion: The formulation excipients didn’t interfere with the determination of NTB, demonstrating the specificity of the developed method. The proposed approach of the analytical method developed can be used to quantify the amount of NTB present in bulk drugs and pharmaceutical formulations.
UR - http://www.scopus.com/inward/record.url?scp=85197393788&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85197393788&partnerID=8YFLogxK
U2 - 10.12688/f1000research.138786.2
DO - 10.12688/f1000research.138786.2
M3 - Article
C2 - 38948504
AN - SCOPUS:85197393788
SN - 2046-1402
VL - 12
JO - F1000Research
JF - F1000Research
M1 - 1389
ER -