A web-based application for face detection in real-time images and videos

Mehul Arora, Sarthak Naithani, Anu Shaju Areeckal

Research output: Contribution to journalConference articlepeer-review

4 Citations (Scopus)


Face detection is widely used in the consumer industry such as advertising, user interfaces, video streaming apps and in many security applications. Every application has its own demands and constraints, and hence cannot be fulfilled by a single face detection algorithm. In this work, we developed an interactive web-based application for face detection in real-time images and videos. Pretrained face detection algorithms, namely Haar cascade classifier, HOG-based frontal face detector, Multi-task Cascaded Convolutional Neural Network (MTCNN) and Deep Neural Network (DNN), were used in the web-based application. A performance analysis of these face detection algorithms is done for various parameters such as different lighting conditions, face occlusion and frame rate. The web app interface can be used for an easy comparison of different face detection algorithms. This will help the user to decide on the algorithm that suits their purpose and requirements for various applications.

Original languageEnglish
Article number012071
JournalJournal of Physics: Conference Series
Issue number1
Publication statusPublished - 11-01-2022
Event1st International Conference on Artificial Intelligence, Computational Electronics and Communication System, AICECS 2021 - Manipal, Virtual, India
Duration: 28-10-202130-10-2021

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'A web-based application for face detection in real-time images and videos'. Together they form a unique fingerprint.

Cite this