TY - JOUR
T1 - Acetone vapor sensing characteristics of Cr-doped ZnO nanofibers
AU - Rajesh, Vishwas
AU - Prabhu, Niranjan N.
AU - Shivamurthy, Basavanna
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - Various amounts of chromium (Cr) were added to zinc oxide (ZnO) nanofibers (NFs) by electrospinning (ES), and pyrolysis was performed at 600 °C to form pure and Cr-doped ZnO NFs. The morphology, structure and optical properties of the NFs were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy (UV-Vis). It was found that the structure of the NFs became rougher, and the diameter decreased with the increase of the Cr content. The maximum diameter of 150 nm was observed for 4 w% Cr-doped ZnO NFs. The bandgap energy decreased as the doping concentration increased. The gas-sensing properties of the Cr-doped ZnO NFs were investigated by measuring their response to acetone vapor. The results indicate that among all the samples, the 4 w% Cr-doped ZnO NFs exhibited the best sensing response to acetone vapor, with a response of 88.65–50 ppm acetone vapor. The response and recovery times were approximately 80 s and 55 s, respectively. Further, the Cr-doped electrospun NFs showed exceptional selectivity and stability, indicating their potential for high-performance gas sensor fabrication. This work reports an intriguing cost-effective lab designed gas sensor to investigate the sensing properties of pure and Cr-doped ZnO NFs.
AB - Various amounts of chromium (Cr) were added to zinc oxide (ZnO) nanofibers (NFs) by electrospinning (ES), and pyrolysis was performed at 600 °C to form pure and Cr-doped ZnO NFs. The morphology, structure and optical properties of the NFs were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy (UV-Vis). It was found that the structure of the NFs became rougher, and the diameter decreased with the increase of the Cr content. The maximum diameter of 150 nm was observed for 4 w% Cr-doped ZnO NFs. The bandgap energy decreased as the doping concentration increased. The gas-sensing properties of the Cr-doped ZnO NFs were investigated by measuring their response to acetone vapor. The results indicate that among all the samples, the 4 w% Cr-doped ZnO NFs exhibited the best sensing response to acetone vapor, with a response of 88.65–50 ppm acetone vapor. The response and recovery times were approximately 80 s and 55 s, respectively. Further, the Cr-doped electrospun NFs showed exceptional selectivity and stability, indicating their potential for high-performance gas sensor fabrication. This work reports an intriguing cost-effective lab designed gas sensor to investigate the sensing properties of pure and Cr-doped ZnO NFs.
UR - http://www.scopus.com/inward/record.url?scp=85184256553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85184256553&partnerID=8YFLogxK
U2 - 10.1080/23311916.2024.2311090
DO - 10.1080/23311916.2024.2311090
M3 - Article
AN - SCOPUS:85184256553
SN - 2331-1916
VL - 11
JO - Cogent Engineering
JF - Cogent Engineering
IS - 1
M1 - 2311090
ER -