TY - JOUR
T1 - Advancing sustainable bioplastics
T2 - chemical and physical modification of starch films for enhanced thermal and barrier properties
AU - Pooja, N.
AU - Shashank, S.
AU - Singh, Bhisham Narayan
AU - Mazumder, Nirmal
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/7/31
Y1 - 2024/7/31
N2 - This study addresses the urgent need for sustainable alternatives to conventional plastics by focusing on modification of thermoplastic starch (TPS) derived from renewable biomass sources. Despite TPS's biodegradability and cost advantages, its limitations in mechanical strength and water resistance prompted the investigation of physical and chemical modifications. Ultrasonication, autoclaving, and cross-linking with substances like citric acid and STMP (sodium trimetaphosphate)/STPP (sodium tripolyphosphate) were employed, with citric acid crosslinking standing out for its significant enhancement of transparency, especially beneficial for packaging applications. Film thickness varied with modification methods, with ultrasonicated films exhibiting thinner structures. Differential scanning calorimetry revealed insights into molecular interactions, with citric acid crosslinked film showing a substantial increase in thermal stability of the polymer at 164 °C, while moisture content analysis showed the impact of ultrasonication on reducing water absorption and citric acid crosslinking enhancing dimensional stability. Water vapor transmission rate data highlighted the effectiveness of ultrasonication in creating films with reduced permeability, and citric acid cross-linked films demonstrated potential for tailored water vapor barrier properties. Static water contact angle results indicated the hydrophobicity of films, with citric acid crosslinked films showing significantly more hydrophobic surfaces. The study also delved into water solubility, emphasizing the influence of depolymerization in ultrasonicated films and strengthened starch networks in crosslinked films, affecting their biodegradability. In conclusion, this comprehensive exploration demonstrates the feasibility of producing robust starch films with improved physicochemical properties through physical and chemical modifications, offering potential solutions in the quest for environmentally friendly alternatives to traditional plastics.
AB - This study addresses the urgent need for sustainable alternatives to conventional plastics by focusing on modification of thermoplastic starch (TPS) derived from renewable biomass sources. Despite TPS's biodegradability and cost advantages, its limitations in mechanical strength and water resistance prompted the investigation of physical and chemical modifications. Ultrasonication, autoclaving, and cross-linking with substances like citric acid and STMP (sodium trimetaphosphate)/STPP (sodium tripolyphosphate) were employed, with citric acid crosslinking standing out for its significant enhancement of transparency, especially beneficial for packaging applications. Film thickness varied with modification methods, with ultrasonicated films exhibiting thinner structures. Differential scanning calorimetry revealed insights into molecular interactions, with citric acid crosslinked film showing a substantial increase in thermal stability of the polymer at 164 °C, while moisture content analysis showed the impact of ultrasonication on reducing water absorption and citric acid crosslinking enhancing dimensional stability. Water vapor transmission rate data highlighted the effectiveness of ultrasonication in creating films with reduced permeability, and citric acid cross-linked films demonstrated potential for tailored water vapor barrier properties. Static water contact angle results indicated the hydrophobicity of films, with citric acid crosslinked films showing significantly more hydrophobic surfaces. The study also delved into water solubility, emphasizing the influence of depolymerization in ultrasonicated films and strengthened starch networks in crosslinked films, affecting their biodegradability. In conclusion, this comprehensive exploration demonstrates the feasibility of producing robust starch films with improved physicochemical properties through physical and chemical modifications, offering potential solutions in the quest for environmentally friendly alternatives to traditional plastics.
UR - http://www.scopus.com/inward/record.url?scp=85200202430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85200202430&partnerID=8YFLogxK
U2 - 10.1039/d4ra04263h
DO - 10.1039/d4ra04263h
M3 - Article
AN - SCOPUS:85200202430
SN - 2046-2069
VL - 14
SP - 23943
EP - 23951
JO - RSC Advances
JF - RSC Advances
IS - 33
ER -