TY - JOUR
T1 - Automotive intelligence
T2 - Unleashing the potential of AI beyond advance driver assisting system, a comprehensive review
AU - Rana, Kapileswar
AU - Khatri, Narendra
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/7
Y1 - 2024/7
N2 - Big data, AI, and machine learning have ushered in a transformative era in computer processing and application. AI's capacity to emulate human cognition spans a spectrum of industries, from rudimentary tasks to intricate decision-making processes. Projections indicate that within a short span, AI technology will bestow computers with human-like capabilities, rendering it indispensable. This advancement has substantially bolstered industry autonomy, fortifying security and safety through the integration of electronics, internet connectivity, advanced algorithms, and cutting-edge processing chips. In this context, Automated Guided Vehicles (AGVs) leverage AI-powered systems and sensors to optimize performance and proactively thwart potential failures. Going beyond Advanced Driver Assistance Systems (ADAS), this review scrutinizes the broader spectrum of AI applications. Specifically, it synthesizes pertinent studies encompassing AI's impact on car emissions, predictive maintenance, security, and the realm of connected vehicles. While AGVs can utilize AI algorithms to chart emission-efficient routes and engineer energy-conservative vehicles, AI, through diverse algorithms, proficiently anticipates component failures, substantially enhancing the cost-effectiveness of predictive maintenance and bolstering vehicle reliability. Moreover, AI integrated with sensor technology safeguards vehicles against a spectrum of threats. Neural networks and machine learning further automate security measures for both cargo and passengers. Concurrently, AI and machine learning fortify traffic control and enhance vehicle communication within connected vehicle frameworks, albeit necessitating fortifications in data security, encryption, and system efficiency. This survey paper comprehensively covers the expanse of automotive AI and machine learning applications, extending beyond ADAS. It underscores that the evolving mobility landscape necessitates a thorough evaluation of network architecture, connectivity, and performance metrics, encompassing AGV technology, networking protocols, and swarm dynamics. In this vein, the paper advocates for experts to address existing literature gaps and proactively enhance automotive systems.
AB - Big data, AI, and machine learning have ushered in a transformative era in computer processing and application. AI's capacity to emulate human cognition spans a spectrum of industries, from rudimentary tasks to intricate decision-making processes. Projections indicate that within a short span, AI technology will bestow computers with human-like capabilities, rendering it indispensable. This advancement has substantially bolstered industry autonomy, fortifying security and safety through the integration of electronics, internet connectivity, advanced algorithms, and cutting-edge processing chips. In this context, Automated Guided Vehicles (AGVs) leverage AI-powered systems and sensors to optimize performance and proactively thwart potential failures. Going beyond Advanced Driver Assistance Systems (ADAS), this review scrutinizes the broader spectrum of AI applications. Specifically, it synthesizes pertinent studies encompassing AI's impact on car emissions, predictive maintenance, security, and the realm of connected vehicles. While AGVs can utilize AI algorithms to chart emission-efficient routes and engineer energy-conservative vehicles, AI, through diverse algorithms, proficiently anticipates component failures, substantially enhancing the cost-effectiveness of predictive maintenance and bolstering vehicle reliability. Moreover, AI integrated with sensor technology safeguards vehicles against a spectrum of threats. Neural networks and machine learning further automate security measures for both cargo and passengers. Concurrently, AI and machine learning fortify traffic control and enhance vehicle communication within connected vehicle frameworks, albeit necessitating fortifications in data security, encryption, and system efficiency. This survey paper comprehensively covers the expanse of automotive AI and machine learning applications, extending beyond ADAS. It underscores that the evolving mobility landscape necessitates a thorough evaluation of network architecture, connectivity, and performance metrics, encompassing AGV technology, networking protocols, and swarm dynamics. In this vein, the paper advocates for experts to address existing literature gaps and proactively enhance automotive systems.
UR - http://www.scopus.com/inward/record.url?scp=85189940864&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85189940864&partnerID=8YFLogxK
U2 - 10.1016/j.compeleceng.2024.109237
DO - 10.1016/j.compeleceng.2024.109237
M3 - Article
AN - SCOPUS:85189940864
SN - 0045-7906
VL - 117
JO - Computers and Electrical Engineering
JF - Computers and Electrical Engineering
M1 - 109237
ER -