Abstract
We present a local convergence analysis of an eighth order- iterative method in order to approximate a locally unique solution of an equation in Banach space setting. Earlier studies have used hypotheses up to the fourth derivative although only the first derivative appears in the definition of these methods. In this study we only use the hypothesis on the first derivative. This way we expand the applicability of these methods. Moreover, we provide a radius of convergence, a uniqueness ball and computable error bounds based on Lipschitz constants. Numerical examples computing the radii of the convergence balls as well as examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.
Original language | English |
---|---|
Pages (from-to) | 513-521 |
Number of pages | 9 |
Journal | SeMA Journal |
Volume | 74 |
Issue number | 4 |
DOIs | |
Publication status | Published - 12-2017 |
All Science Journal Classification (ASJC) codes
- Applied Mathematics
- Modelling and Simulation
- Numerical Analysis
- Control and Optimization