Box-Behnken Design-Aided Validation and Optimization of a Stability-Indicating Reverse Phase-HPLC Method for the Estimation of Tamoxifen Citrate in Lipidic Nano-Vesicles

Gautam Kumar, Prashansha Mullick, Krishnadas Nandakumar, Srinivas Mutalik, Mallikarjuna Rao Chamallamudi

Research output: Contribution to journalArticlepeer-review

Abstract

Stability indicating a reverse-phase HPLC analytical method for the quantification of tamoxifen citrate (TMX) in the bulk and lipidic nano-vesicles (LNVs) was developed. The optimized method was validated according to the ICH Q2 (R1) guidelines by following a three-factor interaction Box-Behnken design using Design-Expert® software. The responses measured at 236 nm were retention time (Rt), peak area, tailing factor (TF) and the number of theoretical plates. TMX was eluted best using the Luna® C18 LC Column along with a mobile phase of methanol (MeOH) and ammonium acetate buffer (AAB pH 4.5) 80:20 v/v mixture at 25 ± 2°C temperature. The currently developed method was linear in 100-5,000 ng/mL range with a detection limit of 4.55 ng/mL and a quantification limit of 13.78 ng/mL. The optimized method was utilized to evaluate the stability of TMX in different stress conditions by performing forced degradation studies. The results from the degradation study stipulated that on exposure to various stressors namely acid, alkali, oxidative, thermal and UV light, the TMX did not show considerable degradation except for UV light exposure. Further, the method was successfully used for the quantification of TMX in LNVs.

Original languageEnglish
Pages (from-to)827-837
Number of pages11
JournalJournal of Chromatographic Science
Volume61
Issue number9
DOIs
Publication statusPublished - 01-10-2023

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Box-Behnken Design-Aided Validation and Optimization of a Stability-Indicating Reverse Phase-HPLC Method for the Estimation of Tamoxifen Citrate in Lipidic Nano-Vesicles'. Together they form a unique fingerprint.

Cite this