Chemical synthesis and analytical profiling of NTSH: a versatile probe for hydrogen sulfide sensing and cellular imaging

M. Ranjana, Namita N. Kashyap, Prajoy Kumar Mitra, Dhanya Sunil*, Y. N. Sudhakar, Sivaranjana Reddy Vennapusa, Ramesh Raju, Ilkka Tittonen, Dinesh Upadhya

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The development of novel probes featuring diverse structural motifs, with promising applications in H2S detection and cellular imaging remains a central focus of scientific research. This study details the synthesis of 4-methyl-N-(6-nitro-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)benzenesulfonamide (NTSH), which involves a condensation reaction between commercially available 4-nitro-1,8-naphthalic anhydride and p-toluenesulfonyl hydrazide in glacial acetic acid. The H2S probe exhibits detection limits of 166 μM in fluorometric, 15.08 mM in absorbance, 2.48 mM in colorimetric, and 29 nM in electrochemical studies. The versatility of NTSH in sensing endogenous H2S and bioimaging of HEK 293T cells highlights its potential applicability in chemical biology research. The tendency of NTSH to undergo chemical changes in the presence of H2S to induce noticeable optical and electrochemical responses could lay the groundwork for creating sensitive and selective sensing platforms.

Original languageEnglish
Article number115101
JournalMaterials Research Express
Volume11
Issue number11
DOIs
Publication statusPublished - 01-11-2024

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Chemical synthesis and analytical profiling of NTSH: a versatile probe for hydrogen sulfide sensing and cellular imaging'. Together they form a unique fingerprint.

Cite this