Closed loop fractional order drug delivery control scheme for chemotherapy

Nikhil Pachauri, Drishti Yadav, Tarun Kumar Sharma, Om Prakash Verma, Chang Wook Ahn

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Chemotherapy is one of the most extensively utilized cancer treatment strategies worldwide. It is intended to eliminate fast-developing cancer cells in a patient's body. The amount of chemotherapeutic drug that must be administered precisely into a patient's body determines the efficacy of the treatment and governs the patient survival during chemotherapy. Therefore, controlling the chemotherapeutic drug dose delivered to the patient is essential. This research aims to propose a two-degree-of-freedom fractional order proportional–integral–derivative (2FOPID) controller with a set point filter for implementing an automatic drug delivery control scheme during chemotherapy. The Whale optimization algorithm (WOA) is used to tune the parameters of the 2FOPID controller, resulting in a WOA-tuned 2FOPID controller (W2FOPID). The performance of the proposed W2FOPID is compared with the Integral–Proportional–Derivative (IPD), Internal Model Control (IMC), and Fractional Order IMC (FOIMC) schemes. The experimental results demonstrate that the proposed W2FOPID controller is effective, accurate, and robust for drug concentration control during chemotherapy. W2FOPID outperforms IPD, IMC, and FOIMC schemes in terms of Integral Absolute Error by 79.9%, 25.3%, and 23.36%, respectively. In addition, W2FOPID exhibits excellent set-point tracking, noise suppression and uncertainty handling capabilities.

Original languageEnglish
Article number100097
JournalResults in Control and Optimization
Publication statusPublished - 03-2022

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Modelling and Simulation
  • Control and Optimization
  • Applied Mathematics
  • Artificial Intelligence


Dive into the research topics of 'Closed loop fractional order drug delivery control scheme for chemotherapy'. Together they form a unique fingerprint.

Cite this