TY - JOUR
T1 - Co-pyrolysis of low-value wood sawdust and non-recyclable plastics into char
T2 - effect of plastic loading on char yield and its properties
AU - Mishra, Ranjeet Kumar
N1 - Publisher Copyright:
© 2025 RSC.
PY - 2025
Y1 - 2025
N2 - Co-pyrolysis of biomass and plastics is essential to improve the quality and yield of pyrolytic products, optimise energy recovery, and mitigate plastic waste, providing a sustainable approach to waste valorisation. This study examined char production from the co-pyrolysis of biomass and plastic in a semi-batch reactor at 500 °C with a heating rate of 10 °C min−1 and a nitrogen gas flow rate of 100 mL min−1. JCT and NRPET were physically mixed at 30, 50%, and 80% wt%, respectively. The physicochemical properties of biomass and plastics confirmed their suitability as pyrolysis feedstocks. TGA-FTIR results confirmed that the addition of NRPET at 30, 50 and 80 wt% with JCT significantly increased the hydrocarbons and reduced the formation of CO2, CO and oxygenated compounds. Results showed that blending of non-recyclable PET (NRPET) with Jungle Cork Tree (JCT) at 30%, 50%, and 80% reduced char yield by 5.27%, 9.07%, and 12.47%, respectively. Additionally, the blending of JCT and NRPET improved the properties of the char, such as carbon content (22.59%), heating value (6.17 MJ kg−1), bulk density (200.11 kg m−3), and electrical conductivity. The blending process also led to a significant reduction in the oxygen content (18.05%) and surface area (30.78 m2 g−1) of the char. FTIR analysis showed a loss of undesirable functional groups, while Raman spectroscopy revealed an increased ID/IG ratio. Finally, SEM analysis indicated that the incorporation of plastics increased the hardness and reduced the roughness of the char, enhancing its suitability for energy storage or carbon-based material applications.
AB - Co-pyrolysis of biomass and plastics is essential to improve the quality and yield of pyrolytic products, optimise energy recovery, and mitigate plastic waste, providing a sustainable approach to waste valorisation. This study examined char production from the co-pyrolysis of biomass and plastic in a semi-batch reactor at 500 °C with a heating rate of 10 °C min−1 and a nitrogen gas flow rate of 100 mL min−1. JCT and NRPET were physically mixed at 30, 50%, and 80% wt%, respectively. The physicochemical properties of biomass and plastics confirmed their suitability as pyrolysis feedstocks. TGA-FTIR results confirmed that the addition of NRPET at 30, 50 and 80 wt% with JCT significantly increased the hydrocarbons and reduced the formation of CO2, CO and oxygenated compounds. Results showed that blending of non-recyclable PET (NRPET) with Jungle Cork Tree (JCT) at 30%, 50%, and 80% reduced char yield by 5.27%, 9.07%, and 12.47%, respectively. Additionally, the blending of JCT and NRPET improved the properties of the char, such as carbon content (22.59%), heating value (6.17 MJ kg−1), bulk density (200.11 kg m−3), and electrical conductivity. The blending process also led to a significant reduction in the oxygen content (18.05%) and surface area (30.78 m2 g−1) of the char. FTIR analysis showed a loss of undesirable functional groups, while Raman spectroscopy revealed an increased ID/IG ratio. Finally, SEM analysis indicated that the incorporation of plastics increased the hardness and reduced the roughness of the char, enhancing its suitability for energy storage or carbon-based material applications.
UR - https://www.scopus.com/pages/publications/85218992423
UR - https://www.scopus.com/inward/citedby.url?scp=85218992423&partnerID=8YFLogxK
U2 - 10.1039/d4su00739e
DO - 10.1039/d4su00739e
M3 - Article
AN - SCOPUS:85218992423
SN - 2753-8125
JO - RSC Sustainability
JF - RSC Sustainability
ER -