Abstract
In this paper, we introduce a new concept of color Laplacian energy LEc(G). It depends on the underlying graph G and colors of the vertices. We compute color Laplacian spectrum and color Laplacian energies of families of graph with minimum number of colors. We also obtain some bounds of color Laplacian energy. The color Laplacian energy for the colored complement of few families of graphs are also obtained.
Original language | English |
---|---|
Pages (from-to) | 321-330 |
Number of pages | 10 |
Journal | Proceedings of the Jangjeon Mathematical Society |
Volume | 18 |
Issue number | 3 |
Publication status | Published - 01-01-2015 |
All Science Journal Classification (ASJC) codes
- Mathematics(all)