Compressive behaviour of carbon fibres micropillars by in situ SEM nanocompression

T. S. Guruprasad, V. Keryvin*, G. Kermouche, Y. Marthouret, S. Sao-Joao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

As carbon fibres are heterogeneous, anisotropic and small in size, the determination of their mechanical properties is rather difficult. Here, the compressive behaviour of two different carbon fibres is studied using in situ compression tests on micro-pillars with scanning electron microscopy (SEM). The mode of failure is axial splitting. Large hysteretic loops are observed, associated with crack development, but no or small permanent deformation is visible. The compressive properties (modulus, strength) of these pillars are lower than the tensile properties of the fibres (128 GPa and 2.38 for UTS50 respectively and 110 GPa and 2.36 GPa for HR40 respectively). The mechanisms involved are studied and compared with those of various other experimental techniques. The core–shell structure of the fibres is at the origin of these inferior properties (the pillar is associated with the core). The nano-buckling scenario of crystalline carbon stacks constrained by the shear stiffness of the fibre is in agreement with our moduli and strength results.

Original languageEnglish
Article number107699
JournalComposites Part A: Applied Science and Manufacturing
Volume173
DOIs
Publication statusPublished - 10-2023

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Compressive behaviour of carbon fibres micropillars by in situ SEM nanocompression'. Together they form a unique fingerprint.

Cite this