TY - JOUR
T1 - Conductivity/Electrochemical Study of Polyvinyl pyrrolidone-Poly(vinyl alcohol)/I3− Thin Film Electrolyte for Integrated Dye-Sensitized Solar Cells and Supercapacitors
AU - Sangeetha, D. N.
AU - Hegde, Niveditha
AU - Poojari, Vidyashri
AU - Devadiga, Dheeraj
AU - Sudhakar, Y. N.
AU - Santosh, M. S.
AU - Selvakumar, M.
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Abstract: The current era focuses not only on producing solar energy but also preserving it for future use. Dye-sensitized solar cells (DSSC) and supercapacitors (SC) are such energy-based devices. DSSCs capture the solar energy and SCs store this captured energy. A natural anthocyanin dye extracted from Garcinia indica (kokum fruit) was used in the DSSCs. SnO2, one of the promising electrode materials for DSSC, was synthesized via a microwave technique. Blend polymer electrolytes (BPE) were prepared through a solution casting technique. A polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) blend with varying concentrations of potassium iodide, along with iodine dopant, was prepared as a BPE electrolyte composition. The best of the PVA-PVP/KI composition was chosen using Nyquist plots of electrochemical impedance spectroscopy (EIS). Varying the temperature, the dielectric and conductivity study of the chosen composition was studied in detail. A fast/single-step synthesis technique, namely a laser-engraved approach, was used for few-layer graphene synthesis. This graphene serves as a common platform for the DSSC-SC integrated device: as a counter electrode in DSSC and graphene-graphene symmetric electrode in SC. A DSSC-SC integrated device was fabricated and characterized using various analytical and microscopy techniques. The integrated device showed a 0.42 fill factor and 0.56% efficiency. The discharge time for integrated DSSC-SC cells was found to be increased threefold. Graphical Abstract: [Figure not available: see fulltext.]
AB - Abstract: The current era focuses not only on producing solar energy but also preserving it for future use. Dye-sensitized solar cells (DSSC) and supercapacitors (SC) are such energy-based devices. DSSCs capture the solar energy and SCs store this captured energy. A natural anthocyanin dye extracted from Garcinia indica (kokum fruit) was used in the DSSCs. SnO2, one of the promising electrode materials for DSSC, was synthesized via a microwave technique. Blend polymer electrolytes (BPE) were prepared through a solution casting technique. A polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) blend with varying concentrations of potassium iodide, along with iodine dopant, was prepared as a BPE electrolyte composition. The best of the PVA-PVP/KI composition was chosen using Nyquist plots of electrochemical impedance spectroscopy (EIS). Varying the temperature, the dielectric and conductivity study of the chosen composition was studied in detail. A fast/single-step synthesis technique, namely a laser-engraved approach, was used for few-layer graphene synthesis. This graphene serves as a common platform for the DSSC-SC integrated device: as a counter electrode in DSSC and graphene-graphene symmetric electrode in SC. A DSSC-SC integrated device was fabricated and characterized using various analytical and microscopy techniques. The integrated device showed a 0.42 fill factor and 0.56% efficiency. The discharge time for integrated DSSC-SC cells was found to be increased threefold. Graphical Abstract: [Figure not available: see fulltext.]
UR - http://www.scopus.com/inward/record.url?scp=85091000386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091000386&partnerID=8YFLogxK
U2 - 10.1007/s11664-020-08432-z
DO - 10.1007/s11664-020-08432-z
M3 - Article
AN - SCOPUS:85091000386
SN - 0361-5235
VL - 49
SP - 6325
EP - 6335
JO - Journal of Electronic Materials
JF - Journal of Electronic Materials
IS - 11
ER -