TY - JOUR
T1 - Corrosion Inhibition of Mild Steel in Acidic Media by N-[(3,4-Dimethoxyphenyl)Methyleneamino]-4-Hydroxy-Benzamide
AU - Muthamma, Kashmitha
AU - Kumari, Preethi
AU - Lavanya, M.
AU - Rao, Suma A.
N1 - Publisher Copyright:
© 2020, The Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Mild steel (a low carbon steel) is an affordable engineering material used for many purposes in various environments including mild acidic environment with some precautions. The corrosion behaviour of mild steel (MS) in 0.5 M H2SO4 and 0.5 M HCl, in the temperature range (303–323 K) without and with the inhibitor N-[(3,4-dimethoxyphenyl) methyleneamino]-4-hydroxy-benzamide (DMHB), was investigated using Potentiodynamic polarization and Electrochemical impedance spectroscopy (EIS) techniques supplementing with surface characterization study using scanning electron microscope (SEM) and atomic force spectroscopy (AFM). Experimental observations were found to be in agreement with Density functional theory (DFT) calculations. The inhibition efficiency increases with increase in DMHB concentration and showed maximum inhibition efficiency of 86% in 0.5 M H2SO4 and 81% in 0.5 M HCl, respectively, at concentration of 3 × 10─3 M at 303 K. The inhibition efficiency of DMHB obtained relatively at its lower concentration (3 × 10─3 M) compared to other reported related compounds confirms its potential towards corrosion inhibition. The variation in the kinetic and thermodynamic parameters indicated physisorption of DMHB on MS and its mixed type inhibitive action followed Langmuir’s isotherm model. DFT calculations go along with the experimental results, signifying the potential corrosion inhibition behaviour of DMHB for MS in both the acid media.
AB - Mild steel (a low carbon steel) is an affordable engineering material used for many purposes in various environments including mild acidic environment with some precautions. The corrosion behaviour of mild steel (MS) in 0.5 M H2SO4 and 0.5 M HCl, in the temperature range (303–323 K) without and with the inhibitor N-[(3,4-dimethoxyphenyl) methyleneamino]-4-hydroxy-benzamide (DMHB), was investigated using Potentiodynamic polarization and Electrochemical impedance spectroscopy (EIS) techniques supplementing with surface characterization study using scanning electron microscope (SEM) and atomic force spectroscopy (AFM). Experimental observations were found to be in agreement with Density functional theory (DFT) calculations. The inhibition efficiency increases with increase in DMHB concentration and showed maximum inhibition efficiency of 86% in 0.5 M H2SO4 and 81% in 0.5 M HCl, respectively, at concentration of 3 × 10─3 M at 303 K. The inhibition efficiency of DMHB obtained relatively at its lower concentration (3 × 10─3 M) compared to other reported related compounds confirms its potential towards corrosion inhibition. The variation in the kinetic and thermodynamic parameters indicated physisorption of DMHB on MS and its mixed type inhibitive action followed Langmuir’s isotherm model. DFT calculations go along with the experimental results, signifying the potential corrosion inhibition behaviour of DMHB for MS in both the acid media.
UR - http://www.scopus.com/inward/record.url?scp=85094634040&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094634040&partnerID=8YFLogxK
U2 - 10.1007/s40735-020-00439-7
DO - 10.1007/s40735-020-00439-7
M3 - Article
AN - SCOPUS:85094634040
SN - 2198-4220
VL - 7
JO - Journal of Bio- and Tribo-Corrosion
JF - Journal of Bio- and Tribo-Corrosion
IS - 1
M1 - 10
ER -