Abstract
In the present article, we have investigated the possibility of utilizing cupric oxide as the promising absorber layers for the construction of oxide solar cells. The effect of argon to oxygen ratio on the structural and optical properties of copper oxide thin films is described. From the optical characterization, it was evident that band gap energy can be tuned by varying the argon to oxygen ratio (Ar:O2) during deposition. Zinc oxide thin films with high transmittance were utilized as n-type counterparts for the cupric oxide absorber layers. The device structure with the configuration glass/Cu/CuO/ZnO/Al was characterized through dark and illuminated current–voltage (I–V) characteristics. Ohm’s law prevailed in the low field regime and space charge limited conduction followed in the high field region as observed from dark I–V characteristics.
Original language | English |
---|---|
Pages (from-to) | 9801-9807 |
Number of pages | 7 |
Journal | Journal of Materials Science: Materials in Electronics |
Volume | 26 |
Issue number | 12 |
DOIs | |
Publication status | Published - 01-12-2015 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering