TY - JOUR
T1 - Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications
AU - Pathak, Lokesh
AU - Kanwal, Abhinav
AU - Agrawal, Yadvendra
PY - 2015/10/24
Y1 - 2015/10/24
N2 - The supramolecular nano-assemblies formed by electrostatic interactions of two oppositely charged lipid and polymer have been made and used as nanocarriers for curcumin to address its bioavailability and solubility issues. These curcumin encapsulated nano-supramolecular assemblies were characterized with respect to their size (dynamic light scattering), morphology (TEM, SEM), zeta potential (Laser Doppler Velocimetry), encapsulation efficiency (EE), curcumin loading (CL) etc. Stability of the nano-assemblies was assessed at different storage times as a function of varying pH and temperature. The physicochemical characterization of nano-assemblies was performed using Fourier Transform Infra Red Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The in-vitro antioxidant lipid peroxidation (TBARS), radical scavenging (DPPH, NO, H2O2, reducing power) activity assays of powdered curcumin and nano-encapsulated curcumin were performed. It was found that nano-encapsulated curcumin were roughly spherical in shape, presented high positive zeta potential (>30 mV), monodisperse (polydispersity index <0.3), amorphous in nature, stable in the pH range of 2–6 and have enhanced antioxidant potency in comparison to crystalline curcumin in aqueous media. In conclusion, the curcumin encapsulated nanocarriers system has great potential as functional food ingredient of natural origin.
AB - The supramolecular nano-assemblies formed by electrostatic interactions of two oppositely charged lipid and polymer have been made and used as nanocarriers for curcumin to address its bioavailability and solubility issues. These curcumin encapsulated nano-supramolecular assemblies were characterized with respect to their size (dynamic light scattering), morphology (TEM, SEM), zeta potential (Laser Doppler Velocimetry), encapsulation efficiency (EE), curcumin loading (CL) etc. Stability of the nano-assemblies was assessed at different storage times as a function of varying pH and temperature. The physicochemical characterization of nano-assemblies was performed using Fourier Transform Infra Red Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The in-vitro antioxidant lipid peroxidation (TBARS), radical scavenging (DPPH, NO, H2O2, reducing power) activity assays of powdered curcumin and nano-encapsulated curcumin were performed. It was found that nano-encapsulated curcumin were roughly spherical in shape, presented high positive zeta potential (>30 mV), monodisperse (polydispersity index <0.3), amorphous in nature, stable in the pH range of 2–6 and have enhanced antioxidant potency in comparison to crystalline curcumin in aqueous media. In conclusion, the curcumin encapsulated nanocarriers system has great potential as functional food ingredient of natural origin.
UR - http://www.scopus.com/inward/record.url?scp=84942194870&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942194870&partnerID=8YFLogxK
U2 - 10.1007/s13197-015-1742-2
DO - 10.1007/s13197-015-1742-2
M3 - Article
AN - SCOPUS:84942194870
SN - 0022-1155
VL - 52
SP - 6143
EP - 6156
JO - Journal of Food Science and Technology
JF - Journal of Food Science and Technology
IS - 10
ER -