DeepSkin: A Deep Learning Approach for Skin Cancer Classification

H. L. Gururaj, N. Manju, A. Nagarjun, V. N. Manjunath Aradhya, Francesco Flammini*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

114 Citations (Scopus)

Abstract

Skin cancer is one of the most rapidly spreading illnesses in the world and because of the limited resources available. Early detection of skin cancer is crucial accurate diagnosis of skin cancer identification for preventive approach in general. Detecting skin cancer at an early stage is challenging for dermatologists, as well in recent years, both supervised and unsupervised learning tasks have made extensive use of deep learning. One of these models, Convolutional Neural Networks (CNN), has surpassed all others in object detection and classification tests. The dataset is screened from MNIST: HAM10000 which consists of seven different types of skin lesions with the sample size of 10015 is used for the experimentation. The data pre-processing techniques like sampling, dull razor and segmentation using autoencoder and decoder is employed. Transfer learning techniques like DenseNet169 and Resnet 50 were used to train the model to obtain the results.

Original languageEnglish
Pages (from-to)50205-50214
Number of pages10
JournalIEEE Access
Volume11
DOIs
Publication statusPublished - 2023

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'DeepSkin: A Deep Learning Approach for Skin Cancer Classification'. Together they form a unique fingerprint.

Cite this