TY - JOUR
T1 - Delineating the Neuropathology of Lysosomal Storage Diseases Using Patient-Derived Induced Pluripotent Stem Cells
AU - Sabitha, K. R.
AU - Chandran, Divya
AU - Shetty, Ashok K.
AU - Upadhya, Dinesh
N1 - Funding Information:
This work is supported by grants from Science and Engineering Research Board (SERB-EMR/2017/005213 to D.U.) and Intramural grant from Manipal Academy of Higher Education, Manipal (MAHE/PDF/2019 to S.K.R.).
Publisher Copyright:
© Copyright 2022, Mary Ann Liebert, Inc., publishers 2022.
PY - 2022/5
Y1 - 2022/5
N2 - Lysosomal storage diseases (LSDs) are inherited metabolic diseases caused by deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of induced pluripotent stem cell (iPSC) technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular, and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis, and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood-brain barrier dysfunction, neurodegeneration, gliosis, and altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation-corrected lines identified using patient-derived iPSCs for different LSDs.
AB - Lysosomal storage diseases (LSDs) are inherited metabolic diseases caused by deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of induced pluripotent stem cell (iPSC) technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular, and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis, and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood-brain barrier dysfunction, neurodegeneration, gliosis, and altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation-corrected lines identified using patient-derived iPSCs for different LSDs.
UR - http://www.scopus.com/inward/record.url?scp=85130633646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130633646&partnerID=8YFLogxK
U2 - 10.1089/scd.2021.0304
DO - 10.1089/scd.2021.0304
M3 - Review article
C2 - 35316126
AN - SCOPUS:85130633646
SN - 1547-3287
VL - 31
SP - 221
EP - 238
JO - Stem Cells and Development
JF - Stem Cells and Development
IS - 9-10
ER -