Delineating the Neuropathology of Lysosomal Storage Diseases Using Patient-Derived Induced Pluripotent Stem Cells

K. R. Sabitha, Divya Chandran, Ashok K. Shetty, Dinesh Upadhya*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)

Abstract

Lysosomal storage diseases (LSDs) are inherited metabolic diseases caused by deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of induced pluripotent stem cell (iPSC) technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular, and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis, and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood-brain barrier dysfunction, neurodegeneration, gliosis, and altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation-corrected lines identified using patient-derived iPSCs for different LSDs.

Original languageEnglish
Pages (from-to)221-238
Number of pages18
JournalStem Cells and Development
Volume31
Issue number9-10
DOIs
Publication statusPublished - 05-2022

All Science Journal Classification (ASJC) codes

  • Hematology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Delineating the Neuropathology of Lysosomal Storage Diseases Using Patient-Derived Induced Pluripotent Stem Cells'. Together they form a unique fingerprint.

Cite this