TY - JOUR
T1 - Design and analysis of a vertically extended gate field effect transistor (VEG-FET)-based hydrogen gas sensor
T2 - a comprehensive modeling and simulation approach
AU - Martha, Pramod
AU - Kohli, Mayank
AU - Kumar, Rahul
AU - Behera, Santosh Kumar
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025
Y1 - 2025
N2 - In this study, a novel vertically extended gate field effect transistor (VEG-FET)-based hydrogen (H2) gas sensor with a look-up-table (LUT) based modeling and simulation approach is presented. The gate area is extended vertically without affecting the intrinsic parameters to provide a larger area for the adsorption of H2 molecules without increasing the sensor footprint. The gate electrode was vertically extended by depositing platinum (Pt) over a channel created in Parylene-C polymer. An analytical model was constructed for the interaction of H2 gas with platinum (Pt) to determine the change in the work function (ΦM). The Pt work function lowered by 16% for input hydrogen gas pressure (PH2) of 0 to 0.5 torr. The Pt-H2 interaction information is passed to a technology computer-aided design (TCAD) tool for VEG-FET design and simulation. The drain current (IDS) of the VEG-FET varies from 150.7 mA without H2 gas to 310.3 mA at 0.5 torr hydrogen gas pressure at gate to source (VGS) and drain to source (VDS) voltage of 3 V. Both bioreaction and TCAD results are passed to Cadence Virtuoso for a complete gas sensor with read-out circuit simulation using the LUT method. A VEG-FET based common source amplifier with resistive load was designed and simulated, and the output voltage (Vout) varied by ∼40% for PH2 = 0.5 torr.
AB - In this study, a novel vertically extended gate field effect transistor (VEG-FET)-based hydrogen (H2) gas sensor with a look-up-table (LUT) based modeling and simulation approach is presented. The gate area is extended vertically without affecting the intrinsic parameters to provide a larger area for the adsorption of H2 molecules without increasing the sensor footprint. The gate electrode was vertically extended by depositing platinum (Pt) over a channel created in Parylene-C polymer. An analytical model was constructed for the interaction of H2 gas with platinum (Pt) to determine the change in the work function (ΦM). The Pt work function lowered by 16% for input hydrogen gas pressure (PH2) of 0 to 0.5 torr. The Pt-H2 interaction information is passed to a technology computer-aided design (TCAD) tool for VEG-FET design and simulation. The drain current (IDS) of the VEG-FET varies from 150.7 mA without H2 gas to 310.3 mA at 0.5 torr hydrogen gas pressure at gate to source (VGS) and drain to source (VDS) voltage of 3 V. Both bioreaction and TCAD results are passed to Cadence Virtuoso for a complete gas sensor with read-out circuit simulation using the LUT method. A VEG-FET based common source amplifier with resistive load was designed and simulated, and the output voltage (Vout) varied by ∼40% for PH2 = 0.5 torr.
UR - https://www.scopus.com/pages/publications/85216431804
UR - https://www.scopus.com/inward/citedby.url?scp=85216431804&partnerID=8YFLogxK
U2 - 10.1039/d4tc04574b
DO - 10.1039/d4tc04574b
M3 - Article
AN - SCOPUS:85216431804
SN - 2050-7526
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
ER -