Detection of Alzheimer’s Disease Progression Using Integrated Deep Learning Approaches

Jayashree Shetty, Nisha P. Shetty*, Hrushikesh Kothikar, Saleh Mowla, Aiswarya Anand, Veeraj Hegde

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Alzheimer’s disease (AD) is an intensifying disorder that causes brain cells to degenerate early and destruct. Mild cognitive impairment (MCI) is one of the early signs of AD that interferes with people’s regular functioning and daily activities. The proposed work includes a deep learning approach with a multimodal recurrent neural network (RNN) to predict whether MCI leads to Alzheimer’s or not. The gated recurrent unit (GRU) RNN classifier is trained using individual and correlated features. Feature vectors are concatenated based on their correlation strength to improve prediction results. The feature vectors generated are given as the input to multiple different classifiers, whose decision function is used to predict the final output, which determines whether MCI progresses onto AD or not. Our findings demonstrated that, compared to individual modalities, which provided an average accuracy of 75%, our prediction model for MCI conversion to AD yielded an improvement in accuracy up to 96% when used with multiple concatenated modalities. Comparing the accuracy of different decision functions, such as Support Vector Machine (SVM), Decision tree, Random Forest, and Ensemble techniques, it was found that that the Ensemble approach provided the highest accuracy (96%) and Decision tree provided the lowest accuracy (86%).

Original languageEnglish
Pages (from-to)1345-1362
Number of pages18
JournalIntelligent Automation and Soft Computing
Volume37
Issue number2
DOIs
Publication statusPublished - 2023

All Science Journal Classification (ASJC) codes

  • Software
  • Theoretical Computer Science
  • Computational Theory and Mathematics
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Detection of Alzheimer’s Disease Progression Using Integrated Deep Learning Approaches'. Together they form a unique fingerprint.

Cite this