TY - JOUR
T1 - Diversity, in-vitro virulence traits and antifungal susceptibility pattern of gastrointestinal yeast flora of healthy poultry, Gallus gallus domesticus
AU - Subramanya, Supram Hosuru
AU - Sharan, Nawal Kishor
AU - Baral, Bharat Prasad
AU - Hamal, Deependra
AU - Nayak, Niranjan
AU - Prakash, Peralam Yegneswaran
AU - Sathian, Brijesh
AU - Bairy, Indira
AU - Gokhale, Shishir
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/5/15
Y1 - 2017/5/15
N2 - Background: Poultry farming and consumption of poultry (Gallus gallus domesticus) meat and eggs are common gastronomical practices worldwide. Till now, a detailed understanding about the gut colonisation of Gallus gallus domesticus by yeasts and their virulence properties and drug resistance patterns in available literature remain sparse. This study was undertaken to explore this prevalent issue. Results: A total of 103 specimens of fresh droppings of broiler chickens (commercial G domesticus) and domesticated chickens (domesticated G domesticus) were collected from the breeding sites. The isolates comprised of 29 (33%) Debaryozyma hansenii (Candida famata), 12 (13.6%) Sporothrix catenata (C. ciferrii), 10 (11.4%) C. albicans, 8 (9.1%) Diutnia catenulata (C. catenulate), 6 (6.8%) C. tropicalis, 3 (3.4%) Candida acidothermophilum (C. krusei), 2 (2.3%) C. pintolopesii, 1 (1.1%) C. parapsilosis, 9 (10.2%) Trichosporon spp. (T. moniliiforme, T. asahii), 4 (4.5%) Geotrichum candidum, 3 (3.4%) Cryptococcus macerans and 1 (1%) Cystobasidium minuta (Rhodotorula minuta). Virulence factors, measured among different yeast species, showed wide variability. Biofilm cells exhibited higher Minimum Inhibitory Concentration (MIC) values (μg/ml) than planktonic cells against all antifungal compounds tested: (fluconazole, 8-512 vs 0.031-16; amphotericin B, 0.5-64 vs 0.031-16; voriconazole 0.062-16 vs 0.062-8; caspofungin, 0.062-4 vs 0.031-1). Conclusions: The present work extends the current understanding of in vitro virulence factors and antifungal susceptibility pattern of gastrointestinal yeast flora of G domesticus. More studies with advanced techniques are needed to quantify the risk of spread of these potential pathogens to environment and human.
AB - Background: Poultry farming and consumption of poultry (Gallus gallus domesticus) meat and eggs are common gastronomical practices worldwide. Till now, a detailed understanding about the gut colonisation of Gallus gallus domesticus by yeasts and their virulence properties and drug resistance patterns in available literature remain sparse. This study was undertaken to explore this prevalent issue. Results: A total of 103 specimens of fresh droppings of broiler chickens (commercial G domesticus) and domesticated chickens (domesticated G domesticus) were collected from the breeding sites. The isolates comprised of 29 (33%) Debaryozyma hansenii (Candida famata), 12 (13.6%) Sporothrix catenata (C. ciferrii), 10 (11.4%) C. albicans, 8 (9.1%) Diutnia catenulata (C. catenulate), 6 (6.8%) C. tropicalis, 3 (3.4%) Candida acidothermophilum (C. krusei), 2 (2.3%) C. pintolopesii, 1 (1.1%) C. parapsilosis, 9 (10.2%) Trichosporon spp. (T. moniliiforme, T. asahii), 4 (4.5%) Geotrichum candidum, 3 (3.4%) Cryptococcus macerans and 1 (1%) Cystobasidium minuta (Rhodotorula minuta). Virulence factors, measured among different yeast species, showed wide variability. Biofilm cells exhibited higher Minimum Inhibitory Concentration (MIC) values (μg/ml) than planktonic cells against all antifungal compounds tested: (fluconazole, 8-512 vs 0.031-16; amphotericin B, 0.5-64 vs 0.031-16; voriconazole 0.062-16 vs 0.062-8; caspofungin, 0.062-4 vs 0.031-1). Conclusions: The present work extends the current understanding of in vitro virulence factors and antifungal susceptibility pattern of gastrointestinal yeast flora of G domesticus. More studies with advanced techniques are needed to quantify the risk of spread of these potential pathogens to environment and human.
UR - http://www.scopus.com/inward/record.url?scp=85019201752&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019201752&partnerID=8YFLogxK
U2 - 10.1186/s12866-017-1024-4
DO - 10.1186/s12866-017-1024-4
M3 - Article
AN - SCOPUS:85019201752
SN - 1471-2180
VL - 17
JO - BMC Microbiology
JF - BMC Microbiology
IS - 1
M1 - 113
ER -