TY - JOUR
T1 - DOMINATION NUMBER OF A BIPARTITE SEMIGRAPH WHEN IT IS A CYCLE
AU - Shetty, Jyoti
AU - Sudhakara, G.
N1 - Funding Information:
The authors would like to thank the Editor-in-chief and the anonymous referees for their beneficial comments in the review process which is worthwhile to improve the standard of this manuscript. The corresponding author would like to thank Manipal Institute of Technology, affiliated to Manipal Academy of Higher Education (MAHE), India for their kind support. And the first author is thankful to MAHE for research encouragement provided through Dr. T. M. A. Pai as Ph. D. scholarship.
Funding Information:
The authors would like to thank the Editor-in-chief and the anonymous referees for theirbeneficial comments in the review process which is worthwhile to improve the standardof this manuscript. The corresponding author would like to thank Manipal Institute of Technology, affiliated to Manipal Academy of Higher Education (MAHE), India for theirkind support. And the first author is thankful to MAHE for research encouragementprovided through Dr. T. M. A. Pai as Ph. D. scholarship.
Publisher Copyright:
© Isik University, Department of Mathematics, 2022, all rights reserved.
PY - 2022
Y1 - 2022
N2 - Semigraph is a generalization of graph, with two or more vertices on edgeswhich allows multiplicity in every concept of graph when it comes to semigraph. Whennumber of vertices on the edges are restricted to two the semigraph is a graph, so everygraph is a semigraph. In this article we deal with the variety of bipartite semigraphs,namely bipartite, s-bipartite and e-bipartite and bounds for their domination number(adjacent domination number and end vertex adjacent domination number) in particu-lar when the semigraph is a cycle and also about possible size of the bipartite sets whenthe bipartite semigraph is a cycle.
AB - Semigraph is a generalization of graph, with two or more vertices on edgeswhich allows multiplicity in every concept of graph when it comes to semigraph. Whennumber of vertices on the edges are restricted to two the semigraph is a graph, so everygraph is a semigraph. In this article we deal with the variety of bipartite semigraphs,namely bipartite, s-bipartite and e-bipartite and bounds for their domination number(adjacent domination number and end vertex adjacent domination number) in particu-lar when the semigraph is a cycle and also about possible size of the bipartite sets whenthe bipartite semigraph is a cycle.
UR - http://www.scopus.com/inward/record.url?scp=85123548994&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123548994&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85123548994
SN - 2146-1147
VL - 12
SP - 167
EP - 175
JO - Turkish World Mathematical Society Journal of Applied and Engineering Mathematics
JF - Turkish World Mathematical Society Journal of Applied and Engineering Mathematics
IS - 1
ER -