Drag Mitigation of Trilobed Airship Hull through Aerodynamic Comparison with Conventional Single-Lobed Hull

Manish Tripathi, M. Manikandan*, Pranshul Pandey, Rajkumar S. Pant

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Multilobed hybrid airships are being considered the next paradigm for reinvigorated utilization of lighter-than-air systems toward the realization of a green aviation future. However, increased epistemic understanding pertaining to their underlying complex aerodynamics in comparison to their conventional single-lobed counterparts is essential to augment the global implementation of these airships. This paper presents a comprehensive numerical investigation carried out at low subsonic speeds and a Reynolds number (Re) of 3.9×105 to capture the aerodynamics related to a trilobed airship hull in comparison to a single-lobed (conventional) airship hull based on the LOTTE profile. Postsolver validation, the study deliberates key aerodynamic aspects that need consideration while replacing a single-lobed airship with a trilobed airship. It is established that a trilobed hull with the same hull volume leads to significantly higher aerodynamic efficiency (109%) due to the increased lift coefficient in comparison to the conventional hull. However, reduced longitudinal stability and increased drag coefficient values (83.9%) with the difference being higher at higher angles are its biggest shortcomings. The paper makes use of the pressure coefficient as well as the flow-field description plots to decipher the alleviation of three-dimensional relieving, and the flow intermixing effects at the nose and stern portions, respectively in the case of trilobed hull leading to these aerodynamic deviations. Furthermore, the paper makes use of a webbed trilobed variant, to alleviate the aforementioned drag penalties by virtue of reduced flow separation in the stern portion. Notwithstanding, this benefit, a webbed trilobed variant leads to reduced lift coefficient values compared to the baseline trilobed hull variant. Hence, this paper underscores key aerodynamic differences between the conventional and trilobed hull variants and makes use of this understanding to mitigate drag penalty related to the latter by closing the gap between its three lobes.

Original languageEnglish
Article number04023073
JournalJournal of Aerospace Engineering
Volume36
Issue number6
DOIs
Publication statusPublished - 01-11-2023

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • General Materials Science
  • Aerospace Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Drag Mitigation of Trilobed Airship Hull through Aerodynamic Comparison with Conventional Single-Lobed Hull'. Together they form a unique fingerprint.

Cite this