TY - JOUR
T1 - Dynamic investigation of 650 W roof-top horizontal wind turbine rotor system supported by radial permanent magnet bearings
AU - Chalageri, Gireesha R.
AU - Bekinal, Siddappa I.
AU - Doddamani, Mrityunjay
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - The present work focuses on the rotor dynamic properties of a 650 W roof-top horizontal axis windturbine (HAWT) rotor supported by radial permanent magnet bearings (PMBs). Radial PMBs were designed and optimized concerning the rotor of a wind turbine for maximum stiffness. Initially, a generalized design and optimization process for multi-ring radial PMBs (MrRPMBs) with a radial air gap is presented to get the maximized force and stiffness per magnet volume. The proposed mathematical model is validated using the Finite Element (FE) analysis tool Ansys for chosen rotor dimensions. Then, the same optimization technique was extended for HAWT rotor bearings to extract the optimized multi-ring radial bearing parameters. The dynamic investigation is performed to study the effect of bearing parameters on the rotor-bearing modal frequency and dynamic amplitude of a rotor. Firstly, the dynamic investigation was performed for the conventional deep groove ball bearings (DGBs) supported rotor, considering the effect of bearing span length. Secondly, the dynamic response was analyzed for the rotor system through a hybrid bearing set (HBS) by replacing DGB with PMB. Finally, DGBs are completely replaced by radial PMBs. FEanalysis was performed using the Ansys workbench rotor dynamic tool for all the bearing combinations.
AB - The present work focuses on the rotor dynamic properties of a 650 W roof-top horizontal axis windturbine (HAWT) rotor supported by radial permanent magnet bearings (PMBs). Radial PMBs were designed and optimized concerning the rotor of a wind turbine for maximum stiffness. Initially, a generalized design and optimization process for multi-ring radial PMBs (MrRPMBs) with a radial air gap is presented to get the maximized force and stiffness per magnet volume. The proposed mathematical model is validated using the Finite Element (FE) analysis tool Ansys for chosen rotor dimensions. Then, the same optimization technique was extended for HAWT rotor bearings to extract the optimized multi-ring radial bearing parameters. The dynamic investigation is performed to study the effect of bearing parameters on the rotor-bearing modal frequency and dynamic amplitude of a rotor. Firstly, the dynamic investigation was performed for the conventional deep groove ball bearings (DGBs) supported rotor, considering the effect of bearing span length. Secondly, the dynamic response was analyzed for the rotor system through a hybrid bearing set (HBS) by replacing DGB with PMB. Finally, DGBs are completely replaced by radial PMBs. FEanalysis was performed using the Ansys workbench rotor dynamic tool for all the bearing combinations.
UR - https://www.scopus.com/pages/publications/85180472105
UR - https://www.scopus.com/inward/citedby.url?scp=85180472105&partnerID=8YFLogxK
U2 - 10.1080/23311916.2023.2288436
DO - 10.1080/23311916.2023.2288436
M3 - Article
AN - SCOPUS:85180472105
SN - 2331-1916
VL - 10
JO - Cogent Engineering
JF - Cogent Engineering
IS - 2
M1 - 2288436
ER -