TY - GEN
T1 - ECC-based Authenticated Key-Agreement Algorithm using Time-stamps for IoD networks
AU - Samanth, Snehal
AU - Prema, V.
AU - Balachandra, Mamatha
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Internet of Things (IoT) networks have advanced and have made the lives of humans much easier, during the past few decades. Raspberry Pi (RP) is a type of IoT device with memory constraints. Both military and civilian applications have used drones or Unmanned Aerial Vehicles (UAVs) over the past several decades. Internet of Drones (IoD) networks are subsets of IoT networks. Drones are resource-constrained devices. Moreover, IoD networks are vulnerable to different security attacks. Hence, 2 RP 3B+ boards are used for the network model to be treated like a drone and a Ground Control Station (GCS) respectively. Moreover, an Authenticated Key-Agreement (AKA) algorithm is designed based on Elliptic Curve Cryptography (ECC). The proposed algorithm has been designed using Python programming language, and the performance metrics analysis is done using Jupyter-Notebook. An idea of integration of timestamps and trigonometric concepts has been introduced to improve the security of the designed ECC-based AKA algorithm. The designed AKA algorithm provides different properties in terms of security, and can also resist some known attacks, as shown by the algorithm's security analysis. The proposed AKA algorithm's analysis in terms of performance shows that it outperforms 3 recent related security mechanisms in terms of performance metrics like Total Computation Cost, Total Storage Cost, and Total Communication Cost.
AB - Internet of Things (IoT) networks have advanced and have made the lives of humans much easier, during the past few decades. Raspberry Pi (RP) is a type of IoT device with memory constraints. Both military and civilian applications have used drones or Unmanned Aerial Vehicles (UAVs) over the past several decades. Internet of Drones (IoD) networks are subsets of IoT networks. Drones are resource-constrained devices. Moreover, IoD networks are vulnerable to different security attacks. Hence, 2 RP 3B+ boards are used for the network model to be treated like a drone and a Ground Control Station (GCS) respectively. Moreover, an Authenticated Key-Agreement (AKA) algorithm is designed based on Elliptic Curve Cryptography (ECC). The proposed algorithm has been designed using Python programming language, and the performance metrics analysis is done using Jupyter-Notebook. An idea of integration of timestamps and trigonometric concepts has been introduced to improve the security of the designed ECC-based AKA algorithm. The designed AKA algorithm provides different properties in terms of security, and can also resist some known attacks, as shown by the algorithm's security analysis. The proposed AKA algorithm's analysis in terms of performance shows that it outperforms 3 recent related security mechanisms in terms of performance metrics like Total Computation Cost, Total Storage Cost, and Total Communication Cost.
UR - http://www.scopus.com/inward/record.url?scp=85145352788&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145352788&partnerID=8YFLogxK
U2 - 10.1109/DISCOVER55800.2022.9974860
DO - 10.1109/DISCOVER55800.2022.9974860
M3 - Conference contribution
AN - SCOPUS:85145352788
T3 - 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022 - Proceedings
SP - 118
EP - 123
BT - 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 6th IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022
Y2 - 14 October 2022 through 15 October 2022
ER -