Energy-efficient synthesis of ferrite powders and films

Ranajit Sai, Suresh D. Kulkarni, K. J. Vinoy, Navakanta Bhat, S. A. Shivashankar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)


In recent years, there has been significant effort in the synthesis of nanocrystalline spinel ferrites due to their unique properties. Among them, zinc ferrite has been widely investigated for countless applications. As traditional ferrite synthesis methods are energy- and time-intensive, there is need for a resource-effective process that can prepare ferrites quickly and efficiently without compromising material quality. We report on a novel microwave-assisted soft-chemical synthesis technique in the liquid medium for synthesis of ZnFe2O4 powder below 100°C, within 5 min. The use of β-diketonate precursors, featuring direct metal-to-oxygen bonds in their molecular structure, not only reduces process temperature and duration sharply, but also leads to water-soluble and non-toxic by-products. As synthesized powder is annealed at 300°C for 2 hrs in a conventional anneal (CA) schedule. An alternative procedure, a 2-min rapid anneal at 300 °C (RA) is shown to be sufficient to crystallize the ferrite particles, which show a saturation magnetization (Ms) of 38 emu/g, compared with 39 emu/g for a 2-hr CA. This signifies that our process is efficient enough to reduce energy consumption by ∼85% just by altering the anneal scheme. Recognizing the criticality of anneal process to the energy budget, a more energy-efficient variation of the reaction process was developed, which obviates the need for post-synthesis annealing altogether. It is shown that the process also can be employed to deposit crystalline thin films of ferrites.

Original languageEnglish
Title of host publicationSustainable Synthesis of Nanomaterials
Number of pages7
Publication statusPublished - 01-12-2012
Event2011 MRS Fall Meeting - Boston, MA, United States
Duration: 28-11-201102-12-2011


Conference2011 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Energy-efficient synthesis of ferrite powders and films'. Together they form a unique fingerprint.

Cite this