Abstract
In this paper, we present the notions of equiprime fuzzy ideal, 3-prime fuzzy ideal and c-prime fuzzy ideal of a nearring. We characterize these fuzzy ideals using level subsets and fuzzy points. If f : N → M is an onto nearring homomorphism, we show that the map μ → f(μ) defines a one-to-one correspondence between the set of all f-invariant (alternatively with sup property) equiprime (3-prime and c-prime, respectively) fuzzy ideals of N and the set of all equiprime (3-prime and c-prime, respectively) fuzzy ideals of M. Finally, we define fuzzy cosets determined by generalized fuzzy ideals; obtain fundamental results and isomorphism theorems.
Original language | English |
---|---|
Pages (from-to) | 933-944 |
Number of pages | 12 |
Journal | Soft Computing |
Volume | 13 |
Issue number | 10 |
DOIs | |
Publication status | Published - 01-01-2009 |
All Science Journal Classification (ASJC) codes
- Software
- Theoretical Computer Science
- Geometry and Topology