TY - JOUR
T1 - Evidence that estrogen directly and indirectly modulates C1 adrenergic bulbospinal neurons in the rostral ventrolateral medulla
AU - Wang, Gang
AU - Drake, Carrie T.
AU - Rozenblit, Mariya
AU - Zhou, Ping
AU - Alves, Stephen E.
AU - Herrick, Scott P.
AU - Hayashi, Shinji
AU - Warrier, Sudha
AU - Iadecola, Costantino
AU - Milner, Teresa A.
PY - 2006/6/13
Y1 - 2006/6/13
N2 - Blood pressure in women increases after menopause, and sympathetic tone in female rats decreases with estrogen injections in the rostral ventrolateral medulla (RVLM) region that contains bulbospinal C1 adrenergic neurons and is involved in blood pressure control. We investigated the anatomical and physiological basis for estrogen effects in the RVLM. Neurons with α- or β-subtypes of estrogen receptor (ER) immunoreactivity (-ir) overlapped in distribution with tyrosine hydroxylase (TH)-containing C1 neurons. Immunoelectron microscopy revealed that ERα- and ERβ-ir had distinct cellular and subcellular distributions. ERα-ir was most commonly in TH-lacking profiles, many of which were axons and peptide-containing afferents that contacted TH-containing dendrites. ERα-ir was also in some TH-containing dendrites. ERβ-ir was most frequently in TH-containing somata and dendrites, particularly on endoplasmic reticula, mitochondria, and plasma membranes. In whole-cell patch clamp recordings from isolated bulbospinal RVLM neurons, 17β-estradiol dose-dependently reduced voltage-gated Ca++ currents, especially the long-lasting (L-type) component. This inhibition was reversed by washing or prevented by adding the non-subtype-selective ER antagonist ICI182780. An ERβ-selective agonist, but not an ERα-selective agonist, reproduced the Ca++ current inhibition. The data indicate that estrogens can modulate the function of RVLM C1 bulbospinal neurons either directly, through extranuclear ERβ, or indirectly through extranuclear ERα in selected afferents. Moreover, Ca++ current inhibition may underlie the decrease in sympathetic tone evoked by local 17β-estradiol application. These findings provide a structural and functional basis for the effects of estrogens on blood pressure control and suggest a mechanism for the modulation of cardiovascular function by estrogen in women.
AB - Blood pressure in women increases after menopause, and sympathetic tone in female rats decreases with estrogen injections in the rostral ventrolateral medulla (RVLM) region that contains bulbospinal C1 adrenergic neurons and is involved in blood pressure control. We investigated the anatomical and physiological basis for estrogen effects in the RVLM. Neurons with α- or β-subtypes of estrogen receptor (ER) immunoreactivity (-ir) overlapped in distribution with tyrosine hydroxylase (TH)-containing C1 neurons. Immunoelectron microscopy revealed that ERα- and ERβ-ir had distinct cellular and subcellular distributions. ERα-ir was most commonly in TH-lacking profiles, many of which were axons and peptide-containing afferents that contacted TH-containing dendrites. ERα-ir was also in some TH-containing dendrites. ERβ-ir was most frequently in TH-containing somata and dendrites, particularly on endoplasmic reticula, mitochondria, and plasma membranes. In whole-cell patch clamp recordings from isolated bulbospinal RVLM neurons, 17β-estradiol dose-dependently reduced voltage-gated Ca++ currents, especially the long-lasting (L-type) component. This inhibition was reversed by washing or prevented by adding the non-subtype-selective ER antagonist ICI182780. An ERβ-selective agonist, but not an ERα-selective agonist, reproduced the Ca++ current inhibition. The data indicate that estrogens can modulate the function of RVLM C1 bulbospinal neurons either directly, through extranuclear ERβ, or indirectly through extranuclear ERα in selected afferents. Moreover, Ca++ current inhibition may underlie the decrease in sympathetic tone evoked by local 17β-estradiol application. These findings provide a structural and functional basis for the effects of estrogens on blood pressure control and suggest a mechanism for the modulation of cardiovascular function by estrogen in women.
UR - http://www.scopus.com/inward/record.url?scp=33745259315&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745259315&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2006.03.089
DO - 10.1016/j.brainres.2006.03.089
M3 - Article
C2 - 16696957
AN - SCOPUS:33745259315
SN - 0006-8993
VL - 1094
SP - 163
EP - 178
JO - Brain Research
JF - Brain Research
IS - 1
ER -