Abstract
Aggregation phenomena arise predominantly due to self-organisation of molecules to form supramolecular assemblies leading to restriction of intramolecular motions. In the present study, the solvent-induced aggregation of salicylaldehyde azine ester (SAE) was comprehensively investigated through experimental techniques, and classical molecular dynamics simulations (MDS). The emission spectra and particle sizes of SAE in THF-water mixtures confirmed the formation of nanoaggregates. The interaction of SAE aggregates with the solvent mixture was studied using Fourier-transform Infrared spectroscopy. The optical microscopy images and surface morphology analysis reinforced the nanoaggregate formation of SAE in solvent mixtures with increasing water fractions. The average number of H-bonds, diffusion coefficients and trajectory density contours of the aggregates were investigated through MDS studies, which provided atomistic perceptions into the formation of rod-like SAE nanoaggregates. The combined results of experimental and theoretical studies offer deeper insights into the self-aligning tendency of SAE in THF-water mixtures.
Original language | English |
---|---|
Pages (from-to) | 4273-4279 |
Number of pages | 7 |
Journal | Soft Matter |
Volume | 18 |
Issue number | 22 |
DOIs | |
Publication status | Published - 24-05-2022 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Condensed Matter Physics