TY - JOUR
T1 - Feature based building orientation optimization for additive manufacturing
AU - Zhang, Yicha
AU - Bernard, Alain
AU - Gupta, Ravi Kumar
AU - Harik, Ramy
N1 - Publisher Copyright:
© 2016 Emerald Group Publishing Limited.
PY - 2016
Y1 - 2016
N2 - Purpose - The purpose of this paper is to present research work based on the authors' conceptual framework reported in the VRAP Conference 2013. It is related with an efficient method to obtain an optimal part build orientation for additive manufacturing (AM) by using AM features with associated AM production knowledge and multi-attribute decision-making (MADM). The paper also emphasizes the importance of AM feature and the implied AM knowledge in AM process planning. Design/methodology/approach - To solve the orientation problem in AM, two sub-tasks, the generation of a set of alternative orientations and the identification of an optimal one within the generated list, should be accomplished. In this paper, AM feature is defined and associated with AM production knowledge to be used for generating a set of alternative orientations. Key attributes for the decision-making of the orientation problem are then identified and used to represent those generated orientations. Finally, an integrated MADM model is adopted to find out the optimal orientation among the generated alternative orientations. Findings - The proposed method to find out an optimal part build orientation for those parts with simple or medium complex geometric shapes is reasonable and efficient. It also has the potential to deal with more complex parts with cellular or porous structures in a short time by using high-performance computers. Research limitations/implications - The proposed method is a proof-of-concept. There is a need to investigate AM feature types and the association with related AM production knowledge further so as to suite the context of orientating parts with more complex geometric features. There are also research opportunities for developing more advanced algorithms to recognize AM features and generate alternative orientations and refine alternative orientations. Originality/value - AM feature is defined and introduced to the orientation problem in AM for generating the alternative orientations. It is also used as one of the key attributes for decision-making so as to help express production requirements on specific geometric features of a desired part.
AB - Purpose - The purpose of this paper is to present research work based on the authors' conceptual framework reported in the VRAP Conference 2013. It is related with an efficient method to obtain an optimal part build orientation for additive manufacturing (AM) by using AM features with associated AM production knowledge and multi-attribute decision-making (MADM). The paper also emphasizes the importance of AM feature and the implied AM knowledge in AM process planning. Design/methodology/approach - To solve the orientation problem in AM, two sub-tasks, the generation of a set of alternative orientations and the identification of an optimal one within the generated list, should be accomplished. In this paper, AM feature is defined and associated with AM production knowledge to be used for generating a set of alternative orientations. Key attributes for the decision-making of the orientation problem are then identified and used to represent those generated orientations. Finally, an integrated MADM model is adopted to find out the optimal orientation among the generated alternative orientations. Findings - The proposed method to find out an optimal part build orientation for those parts with simple or medium complex geometric shapes is reasonable and efficient. It also has the potential to deal with more complex parts with cellular or porous structures in a short time by using high-performance computers. Research limitations/implications - The proposed method is a proof-of-concept. There is a need to investigate AM feature types and the association with related AM production knowledge further so as to suite the context of orientating parts with more complex geometric features. There are also research opportunities for developing more advanced algorithms to recognize AM features and generate alternative orientations and refine alternative orientations. Originality/value - AM feature is defined and introduced to the orientation problem in AM for generating the alternative orientations. It is also used as one of the key attributes for decision-making so as to help express production requirements on specific geometric features of a desired part.
UR - http://www.scopus.com/inward/record.url?scp=85013632206&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013632206&partnerID=8YFLogxK
U2 - 10.1108/RPJ-03-2014-0037
DO - 10.1108/RPJ-03-2014-0037
M3 - Article
AN - SCOPUS:85013632206
SN - 1355-2546
VL - 22
SP - 358
EP - 376
JO - Rapid Prototyping Journal
JF - Rapid Prototyping Journal
IS - 2
ER -