Abstract
Let G = (V, E) be a graph and P = {V1, V2, ..., Vk} be a partition of V of order k ≥ 1. For each set Vr in P, remove the edges of G inside Vr and add the edges Ḡ, (the complement of G) joining the vertices Vr. The graph GPk (i) thus obtained is called the k(i)-complement of G with respect to P. The graph G is k(i)-self complementary (k(i)-s.c) if GPk (i) ≅ G for some partition P of V of order k. Further, G is k(i)co-self complementary (k(i)-co-s.c.) if GPk(i) ≅ Ḡ. We determine (1) all k(i)-s.c trees for k = 2, 3, and (2) 2(i)-s.c. unicyclic graphs. Also, some necessary conditions for a tree/unicyclic graph to be k(i)-s.c. are obtained. We indicate how to obtain characterizations of all k(i)-co.s.c. trees, unicyclic graphs and forests from known results.
Original language | English |
---|---|
Pages (from-to) | 625-639 |
Number of pages | 15 |
Journal | Indian Journal of Pure and Applied Mathematics |
Volume | 29 |
Issue number | 6 |
Publication status | Published - 01-06-1998 |
All Science Journal Classification (ASJC) codes
- Mathematics(all)
- Applied Mathematics