Generalized Essential Submodule Graph of an. R-module

Rajani Salvankar, Babushri Srinivas Kedukodi, Harikrishnan Panackal, Syam Prasad Kuncham*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Let. M be a finitely generated left module over a ring. R with 1. We introduce generalized essential submodule graph, denoted as.g-EM. We show that every maximal submodule is a universal vertex of.g-EM; consequently, we prove that the graph is connected with diameter at most 2. Furthermore, we define a proper.g-essential submodule graph and prove the existence of a path between every two small submodules. We compute the.g-essential submodule graph of the.Z-module.Zn for different values of.n and obtain some properties.

Original languageEnglish
Title of host publicationSemigroups, Algebras and Operator Theory - ICSAOT 2022
EditorsA.A. Ambily, V.B. Kiran Kumar
PublisherSpringer
Pages149-158
Number of pages10
ISBN (Print)9789819963485
DOIs
Publication statusPublished - 2023
EventInternational Conference on Semigroup, Algebras, and Operator Theory, ICSAOT 2022 - Cochin, India
Duration: 28-03-202231-03-2022

Publication series

NameSpringer Proceedings in Mathematics and Statistics
Volume436
ISSN (Print)2194-1009
ISSN (Electronic)2194-1017

Conference

ConferenceInternational Conference on Semigroup, Algebras, and Operator Theory, ICSAOT 2022
Country/TerritoryIndia
CityCochin
Period28-03-2231-03-22

All Science Journal Classification (ASJC) codes

  • General Mathematics

Fingerprint

Dive into the research topics of 'Generalized Essential Submodule Graph of an. R-module'. Together they form a unique fingerprint.

Cite this