TY - JOUR
T1 - IGJO
T2 - An Improved Golden Jackel Optimization Algorithm Using Local Escaping Operator for Feature Selection Problems
AU - Devi, R. Manjula
AU - Premkumar, M.
AU - Kiruthiga, G.
AU - Sowmya, R.
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023
Y1 - 2023
N2 - Feature Selection (FS) is an essential process that is implicated in data mining and machine learning for data preparation by removing redundant and irrelevant features, thereby falling the possible risk associated with the expletive of dimensionality caused by the large dataset. As a result, FS is thought to be a combinatorial NP-hard problem, which refers to a situation where the computation time increases as the problem dimension increases. Recently, researchers have focused on metaheuristic algorithms to perform this task. Therefore, this paper proposes an effective metaheuristic which is a new variant of the recently reported Golden Jackel Optimization (GJO) algorithm called Improved GJO (IGJO). The basic GJO algorithm suffers from a local optima trap when handling large dimensional feature selection problems. Therefore, the effectiveness of the GJO is improved by considering the operators from the gradient-based optimizer. The proposed IGJO is based on the local escaping operator and the direction of population movement to improve the exploration and exploitation ability of the basic GJO algorithm. The superiority of the IGJO algorithm is tested on 23 standard numerical benchmark problems, 29 CEC2017 optimization problems, and 33 CEC2020 constrained real-world engineering design problems. Additionally, the IGJO is transformed to its binary version for the FS problem using a new nonlinear time-varying sigmoid transfer function, and finally, the binary variant is validated on FS problems with different benchmark datasets. The performance of the IGJO is compared with well-known algorithms to validate its superiority. The obtained results show that the IGJO is a reliable tool for numerical optimization problems and FS problems.
AB - Feature Selection (FS) is an essential process that is implicated in data mining and machine learning for data preparation by removing redundant and irrelevant features, thereby falling the possible risk associated with the expletive of dimensionality caused by the large dataset. As a result, FS is thought to be a combinatorial NP-hard problem, which refers to a situation where the computation time increases as the problem dimension increases. Recently, researchers have focused on metaheuristic algorithms to perform this task. Therefore, this paper proposes an effective metaheuristic which is a new variant of the recently reported Golden Jackel Optimization (GJO) algorithm called Improved GJO (IGJO). The basic GJO algorithm suffers from a local optima trap when handling large dimensional feature selection problems. Therefore, the effectiveness of the GJO is improved by considering the operators from the gradient-based optimizer. The proposed IGJO is based on the local escaping operator and the direction of population movement to improve the exploration and exploitation ability of the basic GJO algorithm. The superiority of the IGJO algorithm is tested on 23 standard numerical benchmark problems, 29 CEC2017 optimization problems, and 33 CEC2020 constrained real-world engineering design problems. Additionally, the IGJO is transformed to its binary version for the FS problem using a new nonlinear time-varying sigmoid transfer function, and finally, the binary variant is validated on FS problems with different benchmark datasets. The performance of the IGJO is compared with well-known algorithms to validate its superiority. The obtained results show that the IGJO is a reliable tool for numerical optimization problems and FS problems.
UR - http://www.scopus.com/inward/record.url?scp=85148023378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148023378&partnerID=8YFLogxK
U2 - 10.1007/s11063-023-11146-y
DO - 10.1007/s11063-023-11146-y
M3 - Article
AN - SCOPUS:85148023378
SN - 1370-4621
JO - Neural Processing Letters
JF - Neural Processing Letters
ER -