Improved semantic segmentation of water bodies and land in sar images using generative adversarial networks

Research output: Contribution to journalArticlepeer-review

24 Citations (SciVal)


The availability of computationally efficient and powerful Deep Learning frameworks and high-resolution satellite imagery has created new approach for developing complex applications in the field of remote sensing. The easy access to abundant image data repository made available by different satellites of space agencies such as Copernicus, Landsat, etc. has opened various avenues of research in monitoring the world's oceans, land, rivers, etc. The challenging research problem in this direction is the accurate identification and subsequent segmentation of surface water in images in the microwave spectrum. In the recent years, deep learning methods for semantic segmentation are the preferred choice given its high accuracy and ease of use. One major bottleneck in semantic segmentation pipelines is the manual annotation of data. This paper proposes Generative Adversarial Networks (GANs) on the training data (images and their corresponding labels) to create an enhanced dataset on which the networks can be trained, therefore, reducing human effort of manual labeling. Further, the research also proposes the use of deep-learning approaches such as U-Net and FCN-8 to perform an efficient segmentation of auto annotated, enhanced data of water body and land. The experimental results show that the U-Net model without GAN achieves superior performance on SAR images with pixel accuracy of 0.98 and F1 score of 0.9923. However, when augmented with GANs, the results saw a rise in these metrics with PA of 0.99 and F1 score of 0.9954.

Original languageEnglish
Pages (from-to)55-69
Number of pages15
JournalInternational Journal of Semantic Computing
Issue number1
Publication statusPublished - 01-03-2020

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems
  • Linguistics and Language
  • Computer Science Applications
  • Computer Networks and Communications
  • Artificial Intelligence


Dive into the research topics of 'Improved semantic segmentation of water bodies and land in sar images using generative adversarial networks'. Together they form a unique fingerprint.

Cite this