Improvement of third-order NLO properties of vacuum deposited Cd1-xPbxS nanostructured thin films for optoelectronic device applications

Raghavendra Bairy, H. Vijeth, Suresh D. Kulkarni, M. S. Murari, Udaya K. Bhat

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

A polycrystalline nanostructured cadmium lead sulfide thin film was deposited using the thermal evaporation (PVD) technique (Cd1-xPbxS with x = 0.00, 0.01, 0.05 and 0.1 wt.% of Pb). Structural parameters of as-prepared Cd1-xPbxS thin films have been studied through X-ray diffraction. The optical investigation demonstrates that Cd1-xPbxS film's optical band gap (Eg) may be adjusted from the visible to the near-infrared region. (2.64 - 2.42 eV). The film is substantially more appropriate for absorbing layers in solar cells and optoelectronic applications due to the large decrease in ‘Eg.’ The enhanced Pb doping was found to have altered the surface morphology, verified by Field Emission Scanning Electron Microscopy (FESEM) images. The doped films also showed a significant red shift in the band edge and increased transmittance in the visible and NIR regions. The third-order nonlinear optical (TONLO) parameters of the samples were determined from the Q-switched Nd: YAG laser with 65-ps pulse duration at 1064 nm. The investigated TONLO components such as nonlinear absorption coefficient (β), nonlinear refractive index (n2) and the susceptibility χ(3)were found to be in the range from 1.16 × 10−3 to 4.12 × 10−3 (cmW−1), 1.06 × 10−8 to 3.32 × 10−8 (cm2 W−1) and 1.23 × 10−4 to 5.62 × 10−4 (esu) respectively. The results indicate that Pb-doping on CdS nanostructures on surface morphology can be used to modify NLO characteristics.Cd1-xPbxS thin film is a potential and able material for optoelectronic device applications, as seen by these encouraging NLO results.

Original languageEnglish
Article number112146
JournalMaterials Research Bulletin
Volume161
DOIs
Publication statusPublished - 05-2023

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Improvement of third-order NLO properties of vacuum deposited Cd1-xPbxS nanostructured thin films for optoelectronic device applications'. Together they form a unique fingerprint.

Cite this