Abstract
Original language | English |
---|---|
Pages (from-to) | 399-410 |
Number of pages | 12 |
Journal | Free Radical Biology and Medicine |
Volume | 48 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2010 |
Externally published | Yes |
Fingerprint
Dive into the research topics of 'In vivo radioprotection studies of 3,3′-diselenodipropionic acid, a selenocystine derivative'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Free Radical Biology and Medicine, Vol. 48, No. 3, 2010, p. 399-410.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - In vivo radioprotection studies of 3,3′-diselenodipropionic acid, a selenocystine derivative
AU - Kunwar, A.
AU - Bansal, P.
AU - Kumar, S.J.
AU - Bag, P.P.
AU - Paul, P.
AU - Reddy, N.D.
AU - Kumbhare, L.B.
AU - Jain, V.K.
AU - Chaubey, R.C.
AU - Unnikrishnan, M.K.
AU - Priyadarsini, K.I.
N1 - Cited By :52 Export Date: 10 November 2017 CODEN: FRBME Correspondence Address: Unnikrishnan, M.K.; Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, 576104, India; email: mkunnikrishnan@gmail.com Chemicals/CAS: DNA, 9007-49-2; catalase, 9001-05-2; glutathione, 70-18-8; glutathione peroxidase, 9013-66-5; lipid, 66455-18-3; protein bcl 2, 219306-68-0; protein p21, 85306-28-1; selenocystine, 1464-43-3, 2897-21-4, 29621-88-3; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; 3,3'-diselenodipropionic acid; Antioxidants; Catalase, 1.11.1.6; Glutathione, 70-18-8; Glutathione Peroxidase, 1.11.1.9; Propionic Acids; Radiation-Protective Agents; Selenium Compounds; Superoxide Dismutase, 1.15.1.1 References: Andreassen, C.N., Grau, C., Lindegaard, J.C., Chemical radioprotection: a critical review of amifostine as a cytoprotector in radiotherapy (2008) Semin. Radiat. Oncol., 13, pp. 62-72; Riley, P.A., Free radicals in biology: oxidative stress and the effects of ionizing radiation (1994) Int. J. Radiat. Biol., 65, pp. 27-33; Weiss, J.F., Simic, M.G., Perspectives in radioprotection (1988) Pharmacol. Ther., 39, pp. 1-414; Weiss, J.F., Kumar, K.S., Walden, T.L., Neta, R., Landauer, M.R., Clark, E.P., Advances in radioprotection through the use of combined agent regimens (1990) Int. J. Radiat. Biol., 57, pp. 709-722; Weiss, J.F., Landauer, M.R., Protection against ionizing radiation by antioxidant nutrients and phytochemicals (2003) Toxicology, 189, pp. 1-20; Rosenfield, I., Beath, O.A., (1964) Selenium: Geotoxicity, Biochemistry, Toxicity and Nutrition, , Academic Press, New York; Brenneisen, P., Steinbrenner, H., Sies, H., Selenium, oxidative stress, and health aspects (2005) Mol. Aspects Med., 26, pp. 256-267; Rayman, M.P., The importance of selenium to human health (2000) Lancet, 356, pp. 233-241; Tapiero, H., Townsen, D.M., Tew, K.D., The antioxidant role of selenium and selenol-compounds (2003) Biomed. Pharmacother., 57, pp. 134-144; Venardos, K., Harrison, G., Headrick, J., Perkins, A., Effects of dietary selenium on glutathione peroxidase and thioredoxin reductase activity and recovery from cardiac ischemia-reperfusion (2004) J. Trace Elem. Med. Biol., 18, pp. 81-88; Nichter, M., Thompson, J.J., For my wellness, not just my illness: North Americans use of dietary supplements (2006) Cult. Med. Psychiatry, 30, pp. 175-222; Bradburn, M.J., Deeks, J.J., Berlin, J.A., Localio, A.R., Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial (1996) JAMA, 276, pp. 1957-1963; Vunta, H., Davis, F., Palempalli, U.D., Bhat, D., Arne, R.J., Thompson, J.T., Peterson, D.G., Prabhu, K.S., The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12,14-prostaglandin J2 in macrophages (2007) J. Biol. Chem., 282, pp. 17964-17973; Arteel, G.E., Sies, H., The biochemistry of selenium and the glutathione system (2001) Environ. Toxicol. Pharmacol., 10, pp. 153-158; Sies, H., Arteel, G.E., Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics (2000) Free Radic. Biol. Med., 28, pp. 1451-1455; Papp, L.V., Lu, J., Holmgren, A., Khanna, K.K., From selenium to selenoproteins: synthesis, identity and their role in human health (2007) Antioxid. Redox Signaling, 9, pp. 775-806; Mugesh, G., du Mont, W.-W., Sies, H., Chemistry of biologically important synthetic organoselenium compounds (2001) Chem. Rev., 101, pp. 2125-2179; Kunwar, A., Mishra, B., Barik, A., Kumbhare, L.B., Pandey, R., Jain, V.K., Priyadarsini, K.I., 3,3′-Diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis (2007) Chem. Res. Toxicol., 20, pp. 1482-1487; Mishra, B., Barik, A., Kunwar, A., Kumbhare, L.B., Priyadarsini, K.I., Jain, V.K., Correlating the GPx activity of selenocystine derivatives with one-electron redox reactions (2008) Phosphorus Sulfur Silicon, 183, pp. 1018-1025; Tak, J.K., Park, J.W., The use of ebselen for radioprotection in cultured cells and mice (2009) Free Radic. Biol. Med., 46, pp. 1177-1185; Prabhakar, K.R., Veerapur, V.P., Bansal, P., Parihar, V.K., Reddy, K.M., Kumar, P.B., Priyadarsini, K.I., Unnikrishnan, M.K., Antioxidant and radioprotective effect of the active fraction of Pilea microphylla (L.) ethanolic extract (2007) Chem. Biol. Interact., 165, pp. 22-32; Kunwar, A., Narang, H., Priyadarsini, K.I., Krishna, M., Pandey, R., Sainis, K.B., Delayed activation of PKCδ and NFκB and higher radioprotection in splenic lymphocytes by copper(II)-curcumin (1:1) complex as compared to curcumin (2007) J. Cell. Biochem., 102, pp. 1214-1224; Abei, H., Catalase in vitro (1984) Methods Enzymol., 105, pp. 121-126; Sreejayan, N., Rao, M.N.A., Priyadarsini, K.I., Devasagayam, T.P.A., Inhibition of radiation induced lipid peroxidation by curcumin (1997) Int. J. Pharm., 151, pp. 127-130; Sedlak, J., Lindsay, R., Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent (1968) Anal. Biochem., 25, pp. 192-205; Oliver, C.N., Ahn, B., Moerman, E.J., Goldstein, S., Stadtman, E.R., Age-related changes in oxidized proteins (1987) J. Biol. Chem., 262, pp. 5488-5491; Reitman, S., Frankel, S.A., Colourimetric method for the determination of serum oxaloacetic and glutamic pyruvic transaminases (1957) Am. J. Clin. Pathol., 28, pp. 56-63; Mansour, H.H., Hafez, H.F., Fahmy, N.M., Hanafi, N., Protective effect of N-acetylcysteine against radiation induced DNA damage and hepatic toxicity in rats (2008) Biochem. Pharmacol., 75, pp. 773-780; Sandhya, T., Lathika, K.M., Pandey, B.N., Bhilwade, H.N., Chaubey, R.C., Priyadarsini, K.I., Mishra, K.P., Protection against radiation oxidative damage in mice by Triphala (2006) Mutat. Res., 609, pp. 17-25; Mehata, S., Mehata, L., Mongia, S.P., Effect of whole body X-irradiation on liver of Swiss albino mice (1975) Int. J. Exp. Biol., 13, pp. 73-75; Samini, M., Dehpour, A.R., Hajinabi, K., The effect of lithium on acute toxicity of carbamazepine in mice (1997) Acta Med. Iran, 35, pp. 74-76; Katzung, B.G., (1988) Basic and Clinical Pharmacology, pp. 404-405. , Academic Press, London; Weiss, J.F., Srinivasan, V., Kumar, K.S., Landauer, M.R., Radioprotection by metals: selenium (1992) Adv. Space Res., 12, pp. 23-231; Weiss, J.F., Srinivasan, V., Kumar, K.S., Landauer, M.R., Patchen, M.L., Radioprotection by selenium compounds (1994) Trace Elements and Free Radicals in Oxidative Diseases, pp. 211-222. , Favier A.E., Neve J., and Fauve P. (Eds), Am. Oil Chem. Soc., Champaign, IL; Diamond, A.M., Dale, P., Murray, J.L., Gardina, D.J., The inhibition of radiation induced mutagenesis by the combined effects of selenium and the aminothiol WR-1065 (1996) Mutat. Res., 356, pp. 147-154; Kumar, B.S., Kunwar, A., Ahmad, A., Kumbhare, L.B., Jain, V.K., Priyadarsini, K.I., In vitro radioprotection studies of organoselenium compounds: differences between mono and diselenides (2009) Radiat. Environ. Biophys., 48, pp. 379-384; Maclachlan, T., Narayanan, B., Gerlach, V.L., Smithson, G., Gerwien, R.W., Folkerts, O., Fey, E.G., Alvarez, E., Human fibroblast growth factor 20 (FGF-20; CG53135-05): a novel cytoprotectant with radioprotective potential (2005) Int. J. Radiat. Biol., 81, pp. 567-579; Jagetia, G.C., Reddy, T.K., Modulation of radiation induced alteration in the antioxidant status of mice by naringin (2005) Life Sci., 77, pp. 780-794; Han, Y., Son, S.-J., Akhalaia, M., Platonov, A., Son, H.-J., Lee, K.-H., Yun, Y.-S., Song, J.-Y., Modulation of radiation induced disturbances of antioxidant defense systems by ginsan. (2005) eCAM, 2, pp. 529-536; Ramadan, L.A., Roushdy, H.M., Abusenna, G.M., Amin, N.E., El-Deshw, O.A., Radioprotective effect of silymarin against radiation induced hepatotoxicity (2002) Pharmacol. Res., 45, pp. 447-454; Weiss, J.F., Landauer, M.R., Gunter-Smith, P.J., Hanson, W.R., Effect of radioprotective agents on survival after acute intestinal radiation injury (1995) Radiation and the Gastrointestinal Tract, pp. 183-199. , Dubois A., King G.L., and Livengood D.R. (Eds), CRC Press, Boca Raton, FL; Weiss, J.F., Landauer, M.R., Hogan, J.B., Gunter-Smith, P.J., Benson, K.A., Neta, R., Hanson, W.R., Modification of radiation-induced gastrointestinal and hematopoietic injury in mice by combinations of agents: effects of indomethacin and caffeine (1997) Adv. Exp. Med. Biol., 400 B, pp. 865-872; Mishra, B., Kumbhare, L.B., Jain, V.K., Priyadarsini, K.I., Pulse radiolysis studies on reactions of hydroxyl radicals with selenocystine derivatives (2008) J. Phys. Chem. B, 112, pp. 4441-4446; Zhang, Y., Rohde, L.H., Emami, K., Hammond, D., Casey, R., Mehta, S.K., Jeevarajan, A.S., Wu, H., Suppressed expression of non DSB repair genes inhibits gamma radiation induced cytogenetic repair and cell cycle arrest (2008) DNA Repair, 7, pp. 1835-1845; Amanullah, A., Azam, N., Balliet, A., Hollander, C., Hoffman, B., Fornace, A., Liebermann, D., Cell signalling: cell survival and a Gadd45-factor deficiency (2003) Nature, 424, pp. 741-742; Smith, M.L., Kontny, H.U., Zhan, Q., Sreenath, A., O'Connor, P.M., Fornace Jr., A.J., Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to U.V. irradiation or cisplatin (1996) Oncogene, 13, pp. 2255-2263; Fornace Jr., A.J., Nebert, D.W., Hollander, M.C., Luethy, J.D., Papathanasiou, M., Fargnoli, J., Holbrook, N.J., Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C (1991) Mol. Cell. Biol., 11, pp. 1009-1016; Gupta, M., Gupta, S.K., Hoffman, B., Liebermann, D.A., Gadd45a and gadd45b protect hematopoietic cells from UV induced apoptosis via distinct signaling pathways including p38 activation and JNK inhibition (2006) J. Biol. Chem., 281, pp. 17552-17558; Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., Beach, D., p21 is a universal inhibitor of cyclin kinases (1993) Nature, 366, pp. 701-714; Smith, M.L., Ford, J.M., Hollander, M.C., Bortnick, R.A., Amundson, S.A., Seo, Y.R., Deng, C.X., Fornace Jr., A.J., p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes (2000) Mol. Cell. Biol., 20, pp. 3705-3714; Radford, I.R., Initiation of ionizing radiation-induced apoptosis: DNA damage-mediated or does ceramide have a role? (1999) Int. J. Radiat. Biol., 75, pp. 521-528; Mantena, S.K., Unnikrishnan, S.K., Joshi, R., Radha, V., Uma Devi, P., Mukharjee, T., In vivo radioprotection by 5-amino salicylic acid (2008) Mutat. Res., 650, pp. 63-79; Shi, Y.-Q., Liao, Y.-X., Qu, X.-J., Yuan, H.-Q., Li, S., Qu, J.-B., Lou, H.-X., Marchantin C, a macrocyclic bisbibenzyl, induces apoptosis of human glioma A172 cells (2008) Cancer Lett., 262, pp. 173-182
PY - 2010
Y1 - 2010
N2 - 3,3′-Diselenodipropionic acid (DSePA), a diselenide and a derivative of selenocystine, was evaluated for in vivo radioprotective effects in Swiss albino mice, at an intraperitoneal dose of 2 mg/kg body wt, for 5 days before whole-body exposure to γ-radiation. The radioprotective efficacy was evaluated by assessing protection of the hepatic tissue, the spleen, and the gastrointestinal (GI) tract and survival against sub- and supralethal doses of γ-radiation. DSePA inhibited radiation-induced hepatic lipid peroxidation, protein carbonylation, loss of hepatic function, and damage to the hepatic architecture. DSePA also attenuated the depletion of endogenous antioxidants such as glutathione, glutathione peroxidase, superoxide dismutase, and catalase in the livers of irradiated mice. DSePA also restored the radiation-induced reduction in villus height, crypt cell numbers, and spleen cellularity, indicating protective effects on the GI tract and the hematopoietic system. The results from single-cell gel electrophoresis of the peripheral blood leukocytes showed that DSePA can attenuate radiation-induced DNA damage. The mRNA expression analysis of genes revealed that DSePA augmented GADD45α and inhibited p21 in both spleen and liver tissues. DSePA also inhibited radiation-induced apoptosis in the spleen and reversed radiation-induced alterations in the expression of the proapoptotic BAX and the antiapoptotic Bcl-2 genes. In line with these observations, DSePA improved the 30-day survival of irradiated mice by 35.3%. In conclusion, these findings clearly confirm that DSePA exhibits protective effects against whole-body γ-radiation and the probable mechanisms of action involve the maintenance of antioxidant enzymes, prophylactic action through the attenuation of the DNA damage, and inhibition of apoptosis. © 2009 Elsevier Inc. All rights reserved.
AB - 3,3′-Diselenodipropionic acid (DSePA), a diselenide and a derivative of selenocystine, was evaluated for in vivo radioprotective effects in Swiss albino mice, at an intraperitoneal dose of 2 mg/kg body wt, for 5 days before whole-body exposure to γ-radiation. The radioprotective efficacy was evaluated by assessing protection of the hepatic tissue, the spleen, and the gastrointestinal (GI) tract and survival against sub- and supralethal doses of γ-radiation. DSePA inhibited radiation-induced hepatic lipid peroxidation, protein carbonylation, loss of hepatic function, and damage to the hepatic architecture. DSePA also attenuated the depletion of endogenous antioxidants such as glutathione, glutathione peroxidase, superoxide dismutase, and catalase in the livers of irradiated mice. DSePA also restored the radiation-induced reduction in villus height, crypt cell numbers, and spleen cellularity, indicating protective effects on the GI tract and the hematopoietic system. The results from single-cell gel electrophoresis of the peripheral blood leukocytes showed that DSePA can attenuate radiation-induced DNA damage. The mRNA expression analysis of genes revealed that DSePA augmented GADD45α and inhibited p21 in both spleen and liver tissues. DSePA also inhibited radiation-induced apoptosis in the spleen and reversed radiation-induced alterations in the expression of the proapoptotic BAX and the antiapoptotic Bcl-2 genes. In line with these observations, DSePA improved the 30-day survival of irradiated mice by 35.3%. In conclusion, these findings clearly confirm that DSePA exhibits protective effects against whole-body γ-radiation and the probable mechanisms of action involve the maintenance of antioxidant enzymes, prophylactic action through the attenuation of the DNA damage, and inhibition of apoptosis. © 2009 Elsevier Inc. All rights reserved.
U2 - 10.1016/j.freeradbiomed.2009.11.009
DO - 10.1016/j.freeradbiomed.2009.11.009
M3 - Article
SN - 0891-5849
VL - 48
SP - 399
EP - 410
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
IS - 3
ER -