Locality-constrained linear coding based fused visual features for robust acoustic event classification

Manjunath Mulimani, Shashidhar G. Koolagudi

Research output: Contribution to journalConference articlepeer-review

2 Citations (Scopus)

Abstract

In this paper, a novel Fused Visual Features (FVFs) are proposed for Acoustic Event Classification (AEC) in the meeting room and office environments. The codes of Visual Features (VFs) are evaluated from row vectors and Scale Invariant Feature Transform (SIFT) vectors of the grayscale Gammatonegram of an acoustic event separately using Locality-constrained Linear Coding (LLC). Further, VFs from row vectors and SIFT vectors of the grayscale Gammatonegram are fused to get FVFs. Performance of the proposed FVFs is evaluated on acoustic events of publicly available UPC-TALP and DCASE datasets in clean and noisy conditions. Results show that proposed FVFs are robust to noise and achieve overall recognition accuracy of 96.40% and 90.45% on UPC-TALP and DCASE datasets, respectively.

Original languageEnglish
Pages (from-to)2558-2562
Number of pages5
JournalProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Volume2019-September
DOIs
Publication statusPublished - 2019
Event20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019 - Graz, Austria
Duration: 15-09-201919-09-2019

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Human-Computer Interaction
  • Signal Processing
  • Software
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'Locality-constrained linear coding based fused visual features for robust acoustic event classification'. Together they form a unique fingerprint.

Cite this