Abstract
This paper discusses a modified V-I relationship for the solar photovoltaic (PV) single diode based equivalent model. The model is derived from an equivalent circuit of the PV cell. A PV cell is used to convert the solar incident light to electrical energy. The PV module is derived from the group of series connected PV cells and PV array, or PV string is formed by connecting the group of series and parallel connected PV panels. The model proposed in this paper is applicable for both series and parallel connected PV string/array systems. Initially, the V-I characteristics are derived for a single PV cell, and finally, it is extended to the PV panel and, to string/array. The solar PV cell model is derived based on five parameters model which requires the data’s from the manufacturer’s data sheet. The derived PV model is precisely forecasting the P-V characteristics, V-I characteristics, open circuit voltage, short circuit current and maximum power point (MPP) for the various temperature and solar irradiation conditions. The model in this paper forecasts the required data for both polycrystalline silicon and monocrystalline silicon panels. This PV model is suitable for the PV system of any capacity. The proposed model is simulated using Matlab/Simulink for various PV array configurations, and finally, the derived model is examined in partial shading condition under the various environmental conditions to find the optimal configuration. The PV model proposed in this paper can achieve 99.5% accuracy in producing maximum output power as similar to manufacturers datasheet.
Original language | English |
---|---|
Pages (from-to) | 7-22 |
Number of pages | 16 |
Journal | International Journal of Renewable Energy Development |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 02-2020 |
All Science Journal Classification (ASJC) codes
- Environmental Engineering
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Energy (miscellaneous)