TY - JOUR
T1 - Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites
AU - Chandra, R. B.Jagadeesh
AU - Shivamurthy, B.
AU - Kumar, M. Sathish
AU - Prabhu, Niranjan N.
AU - Sharma, Devansh
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - Polymer nanocomposites have attracted global attention as a metal replacement for electrical and electronic applications. Graphene nanoplatelets (GNPs) are widely used as a nanoreinforcement to enhance the functional and structural properties of thermoset and thermoplastic polymers. In the present study, ABS nanocomposites were prepared by reinforcing 3–15 wt.% GNPs in steps of 3 wt.%. The neat ABS and ABS+GNP nanocomposite specimens for the mechanical test were prepared using injection molding, followed by extrusion, as per American Society for Testing and Materials (ASTM) standards. It was found that the modulus of ABS improved due to the reinforcement of GNPs. Additionally, we noticed higher thermal stability of nanocomposites due to the faster heat-conducting path developed in the nanocomposites by the presence of GNPs. However, observed agglomeration of GNPs at higher concentrations and poor wetting with ABS led to the deterioration of the mechanical properties of the nanocomposites. Moreover, 350 µm thick nanocomposite films were manufactured by compression molding, followed by the extrusion method, and we investigated their electrical conductivity, magnetic permeability, permittivity, and electromagnetic-wave-shielding effectiveness. The developed nanocomposites showed improved conductivity and effective electromagnetic wave shielding by absorption. The 15 wt.% GNP-reinforced ABS composite film showed a maximum shielding effectiveness of 30 dB in the X-band.
AB - Polymer nanocomposites have attracted global attention as a metal replacement for electrical and electronic applications. Graphene nanoplatelets (GNPs) are widely used as a nanoreinforcement to enhance the functional and structural properties of thermoset and thermoplastic polymers. In the present study, ABS nanocomposites were prepared by reinforcing 3–15 wt.% GNPs in steps of 3 wt.%. The neat ABS and ABS+GNP nanocomposite specimens for the mechanical test were prepared using injection molding, followed by extrusion, as per American Society for Testing and Materials (ASTM) standards. It was found that the modulus of ABS improved due to the reinforcement of GNPs. Additionally, we noticed higher thermal stability of nanocomposites due to the faster heat-conducting path developed in the nanocomposites by the presence of GNPs. However, observed agglomeration of GNPs at higher concentrations and poor wetting with ABS led to the deterioration of the mechanical properties of the nanocomposites. Moreover, 350 µm thick nanocomposite films were manufactured by compression molding, followed by the extrusion method, and we investigated their electrical conductivity, magnetic permeability, permittivity, and electromagnetic-wave-shielding effectiveness. The developed nanocomposites showed improved conductivity and effective electromagnetic wave shielding by absorption. The 15 wt.% GNP-reinforced ABS composite film showed a maximum shielding effectiveness of 30 dB in the X-band.
UR - https://www.scopus.com/pages/publications/85151158817
UR - https://www.scopus.com/inward/citedby.url?scp=85151158817&partnerID=8YFLogxK
U2 - 10.3390/jcs7030117
DO - 10.3390/jcs7030117
M3 - Article
AN - SCOPUS:85151158817
SN - 2504-477X
VL - 7
JO - Journal of Composites Science
JF - Journal of Composites Science
IS - 3
M1 - 117
ER -