Microstructure and fracture behaviour of two stage stir cast Al6061-SiC composites

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Present work deals with a metal matrix composite (MMC) of Al6061 as matrix and SiC as reinforcing materials. These composites with different amount of SiC are produced by two stage stir casting process. They are then solutionized and aged at different temperature with varying duration. The influence of artificial aging on mechanical properties has been assessed. Microstructural details, macro-hardness and mechanism of fracture behavior after tensile test have been discussed. Fracture surface of the broken tensile sample is studied in details to know failure mode and parameters that influence the crack growth characteristics. It is found that mechanical properties of the MMCs have improved marginally with the addition of SiC reinforcing particulates while after aging this has been improved markedly due to the precipitation of secondary intermetallic phases. It is found that the fracture mode of the pure Al6061 is purely dimple rupture, characteristic of overload failure and this is due to coalescence of micro-voids. While after addition of SiC reinforced particles the fracture mode becomes predominantly de-cohesive rupture mode in addition of dimple and quasi-cleavage rupture mode.

Original languageEnglish
Pages (from-to)257-263
Number of pages7
JournalJournal of Materials and Environmental Science
Issue number1
Publication statusPublished - 01-01-2017

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Materials Chemistry


Dive into the research topics of 'Microstructure and fracture behaviour of two stage stir cast Al6061-SiC composites'. Together they form a unique fingerprint.

Cite this