TY - JOUR
T1 - MiR-4521 perturbs FOXM1-mediated DNA damage response in breast cancer
AU - Kuthethur, Raviprasad
AU - Adiga, Divya
AU - Kandettu, Amoolya
AU - Jerome, Maria Sona
AU - Mallya, Sandeep
AU - Mumbrekar, Kamalesh Dattaram
AU - Kabekkodu, Shama Prasada
AU - Chakrabarty, Sanjiban
N1 - Funding Information:
This work was supported by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (YSS/2015/001051, and CRG/2020/004681). RK was supported by Indian Council of Medical Research-Senior Research Fellowship (File No: 2019-0278/GEN-BMS), Government of India. The infrastructure support and funding from DST-FIST, Government of India, TIFAC-CORE, DBT-BUILDER grant, Government of India, VGST Karnataka, K-FIST and Manipal Academy of Higher Education is gratefully acknowledged.
Publisher Copyright:
Copyright © 2023 Kuthethur, Adiga, Kandettu, Jerome, Mallya, Mumbrekar, Kabekkodu and Chakrabarty.
PY - 2023
Y1 - 2023
N2 - Introduction: Forkhead (FOX) transcription factors are involved in cell cycle control, cellular differentiation, maintenance of tissues, and aging. Mutation or aberrant expression of FOX proteins is associated with developmental disorders and cancers. FOXM1, an oncogenic transcription factor, is a promoter of cell proliferation and accelerated development of breast adenocarcinomas, squamous carcinoma of the head, neck, and cervix, and nasopharyngeal carcinoma. High FOXM1 expression is correlated with chemoresistance in patients treated with doxorubicin and Epirubicin by enhancing the DNA repair in breast cancer cells. Method: miRNA-seq identified downregulation of miR-4521 in breast cancer cell lines. Stable miR-4521 overexpressing breast cancer cell lines (MCF-7, MDA-MB-468) were developed to identify miR-4521 target gene and function in breast cancer. Results: Here, we showed that FOXM1 is a direct target of miR-4521 in breast cancer. Overexpression of miR-4521 significantly downregulated FOXM1 expression in breast cancer cells. FOXM1 regulates cell cycle progression and DNA damage response in breast cancer. We showed that miR-4521 expression leads to increased ROS levels and DNA damage in breast cancer cells. FOXM1 plays a critical role in ROS scavenging and promotes stemness which contributes to drug resistance in breast cancer. We observed that breast cancer cells stably expressing miR-4521 lead to cell cycle arrest, impaired FOXM1 mediated DNA damage response leading to increased cell death in breast cancer cells. Additionally, miR-4521-mediated FOXM1 downregulation perturbs cell proliferation, invasion, cell cycle progression, and epithelial-to-mesenchymal progression (EMT) in breast cancer. Discussion: High FOXM1 expression has been associated with radio and chemoresistance contributing to poor patient survival in multiple cancers, including breast cancer. Our study showed that FOXM1 mediated DNA damage response could be targeted using miR-4521 mimics as a novel therapeutic for breast cancer.
AB - Introduction: Forkhead (FOX) transcription factors are involved in cell cycle control, cellular differentiation, maintenance of tissues, and aging. Mutation or aberrant expression of FOX proteins is associated with developmental disorders and cancers. FOXM1, an oncogenic transcription factor, is a promoter of cell proliferation and accelerated development of breast adenocarcinomas, squamous carcinoma of the head, neck, and cervix, and nasopharyngeal carcinoma. High FOXM1 expression is correlated with chemoresistance in patients treated with doxorubicin and Epirubicin by enhancing the DNA repair in breast cancer cells. Method: miRNA-seq identified downregulation of miR-4521 in breast cancer cell lines. Stable miR-4521 overexpressing breast cancer cell lines (MCF-7, MDA-MB-468) were developed to identify miR-4521 target gene and function in breast cancer. Results: Here, we showed that FOXM1 is a direct target of miR-4521 in breast cancer. Overexpression of miR-4521 significantly downregulated FOXM1 expression in breast cancer cells. FOXM1 regulates cell cycle progression and DNA damage response in breast cancer. We showed that miR-4521 expression leads to increased ROS levels and DNA damage in breast cancer cells. FOXM1 plays a critical role in ROS scavenging and promotes stemness which contributes to drug resistance in breast cancer. We observed that breast cancer cells stably expressing miR-4521 lead to cell cycle arrest, impaired FOXM1 mediated DNA damage response leading to increased cell death in breast cancer cells. Additionally, miR-4521-mediated FOXM1 downregulation perturbs cell proliferation, invasion, cell cycle progression, and epithelial-to-mesenchymal progression (EMT) in breast cancer. Discussion: High FOXM1 expression has been associated with radio and chemoresistance contributing to poor patient survival in multiple cancers, including breast cancer. Our study showed that FOXM1 mediated DNA damage response could be targeted using miR-4521 mimics as a novel therapeutic for breast cancer.
UR - http://www.scopus.com/inward/record.url?scp=85151499361&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151499361&partnerID=8YFLogxK
U2 - 10.3389/fmolb.2023.1131433
DO - 10.3389/fmolb.2023.1131433
M3 - Article
AN - SCOPUS:85151499361
SN - 2296-889X
VL - 10
JO - Frontiers in Molecular Biosciences
JF - Frontiers in Molecular Biosciences
M1 - 1131433
ER -