Abstract
Long-term survival and antitumor immunity of adoptively transferred CD8+ T cells is dependent on their metabolic fitness, but approaches to isolate therapeutic T cells based on metabolic features are not well established. Here we utilized a lipophilic cationic dye tetramethylrhodamine methyl ester (TMRM) to identify and isolate metabolically robust T cells based on their mitochondrial membrane potential (ΔΨm). Comprehensive metabolomic and gene expression profiling demonstrated global features of improved metabolic fitness in low-ΔΨm-sorted CD8+ T cells. Transfer of these low-ΔΨm T cells was associated with superior long-term in vivo persistence and an enhanced capacity to eradicate established tumors compared with high-ΔΨm cells. Use of ΔΨm-based sorting to enrich for cells with superior metabolic features was observed in CD8+, CD4+ T cell subsets, and long-term hematopoietic stem cells. This metabolism-based approach to cell selection may be broadly applicable to therapies involving the transfer of HSC or lymphocytes for the treatment of viral-associated illnesses and cancer.
| Original language | English |
|---|---|
| Pages (from-to) | 63-76 |
| Number of pages | 14 |
| Journal | Cell Metabolism |
| Volume | 23 |
| Issue number | 1 |
| DOIs | |
| Publication status | Published - 12-01-2016 |
All Science Journal Classification (ASJC) codes
- Physiology
- Molecular Biology
- Cell Biology