Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders

Andrew Vogel, Raghavendra Upadhya, Ashok K. Shetty

Research output: Contribution to journalReview articlepeer-review

119 Citations (Scopus)


Neural stem cell (NSC) grafting in conditions such as aging, brain injury, and neurodegenerative diseases promotes regeneration, plasticity and functional recovery. Recent studies have revealed that administration of NSC-derived extracellular vesicles (NSC-EVs) via non-invasive approaches can also afford therapeutic benefits. This review confers the properties and therapeutic promise of EVs secreted by NSCs. NSC-EVs enriched with specific miRNAs mediate multiple functions in physiological and pathological conditions, which include modulation of the proximate microenvironment, facilitating the entry of viruses into cells, functioning as independent metabolic units, operating as a microglial morphogen and influencing the diverse aspects of brain function in adulthood including the process of aging. Due to their anti-inflammatory, neurogenic and neurotrophic effects, NSC-EVs are also useful for treating multiple neurodegenerative diseases. Although only a few studies have demonstrated the efficacy of NSC-EVs to treat brain impairments, the promise is enormous. Moving forward, the use of well-characterized NSC-EVs generated in specific culture conditions and NSC-EVs that are engineered to carry the desired miRNAs, mRNAs and proteins have great promise for treating brain injury and neurogenerative diseases. Notably, the possibility of targeting NSC-EVs to specific neuronal types or brain regions would enable managing of diverse neurodegenerative conditions with minimal side effects.

Original languageEnglish
Pages (from-to)273-282
Number of pages10
Publication statusPublished - 12-2018

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology


Dive into the research topics of 'Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders'. Together they form a unique fingerprint.

Cite this