Abstract
Photocatalysis is an unconventional, yet promising method that can combat industrial water pollution by decomposing toxic organic effluents into harmless moieties under suitable irradiation sources. Synthesis of magnetically separable Fe3O4@ZnO core–shell nanoparticles at low temperature for the visible light photodegradation of aqueous azo-dye pollutant, methyl orange is reported. Fe3O4 nanoparticles were synthesised by co-precipitation method following which ZnO was grown by reflux reaction with a Fe3O4: ZnO molar ratio of 1: 10. The formation of Fe3O4@ZnO nanoparticles were confirmed by X-ray diffraction and Fourier Transform Infrared Spectroscopy. The bandgap was measured using diffuse reflectance spectroscopy and the photodegradation efficiency of Fe3O4@ZnO nanoparticles on the decolouration of methyl orange was measured under both 365 nm UV and visible light excitations. The magnetic separability, surface area of 36 m2/g and visible light absorption make Fe3O4@ZnO nanoparticles favourable for solar photocatalysis. The point of zero charge (pzc) of the Fe3O4@ZnO nanoparticles determined by the pH drift method was found to be 6.4, which makes the operating pH of the solution (pH= 6) suitable for adsorption/photodegradation. The decolouration of the dye under visible light irradiation closely competed with the decolouration observed under UV irradiation. This is an extremely useful technique in water treatment, especially to treat toxic effluents from several colouring industries.
Original language | English |
---|---|
Pages (from-to) | 1724-1729 |
Number of pages | 6 |
Journal | Advanced Science Letters |
Volume | 23 |
Issue number | 3 |
DOIs | |
Publication status | Published - 01-03-2017 |
All Science Journal Classification (ASJC) codes
- Health(social science)
- General Computer Science
- Education
- General Mathematics
- General Environmental Science
- General Engineering
- General Energy