Abstract
The existing energy situation demands not only the huge energy in a short time but also clean energy. In this regard, an integrated photo-supercapacitor device has been fabricated in which photoelectric conversion and energy storage are achieved simultaneously. A novel carbazole-based dye is synthesized and characterized for photosensitizer. The silver-doped titanium dioxide (Ag-TiO2) is synthesized, and it is used as photoanode material. Different concentrations of tetrabutylammonium iodide (TBAI)-doped polyvinyl alcohol–polyvinylpyrrolidone (PVA-PVP) blend polymer electrolytes are prepared, and their conductivity and dielectric properties were studied. Reduced graphene oxide (r-GO) is synthesized by a one-pot synthesis method and confirmed using Raman spectroscopy for counter electrode material in dye-sensitized solar cell (DSSC) and supercapacitor electrodes. The DSSC having 4% Ag-TiO2–based photoanode showed the highest efficiency of 1.06% (among r-GO counter electrodes) and 2.37% (among platinum counter electrodes). The supercapacitor before integration and after integration exhibits specific capacitance of 1.72 Fg−1 and 1.327 Fg−1, respectively. [Figure not available: see fulltext.].
Original language | English |
---|---|
Pages (from-to) | 1461-1478 |
Number of pages | 18 |
Journal | Journal of Solid State Electrochemistry |
Volume | 25 |
Issue number | 4 |
DOIs | |
Publication status | Published - 04-2021 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Electrochemistry
- Electrical and Electronic Engineering