TY - JOUR
T1 - Numerical Analysis of Heat Transfer Enhancement of Solar Air Heater using Discrete Triangle Wave Corrugations
AU - Sharma, Vansh Ratna
AU - S, Sai Sankalp
AU - Fernandes, Dolfred Vijay
AU - M S, Manjunath
N1 - Funding Information:
The authors received no direct funding for this research. The authors express their gratitude and acknowledge the computational facilities provided by the Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, MAHE, Manipal in carrying out this research work. This research did not receive any specific grant from any funding agencies.
Publisher Copyright:
© 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
PY - 2022
Y1 - 2022
N2 - Enhancement of heat transfer in solar air heater systems using corrugations has the dual benefit of enhanced heat transfer area and enhanced flow turbulence. This work presents two-dimensional computational fluid dynamics (CFD) analysis to evaluate the effect of discrete triangle wave corrugations on the absorber plate for different flow Reynolds numbers of 6000–24000. The geometric parameters of corrugation such as the non-dimensional amplitude (A = 0.025, 0.05 and 0.1) and non-dimensional wavelength (WL = 0.113, 0.226 and 0.453) are varied to establish the thermo-hydraulic performance. The CFD results reveal that the presence of discrete triangle wave corrugations significantly affect the flow structure near the absorber surface and exhibit enhanced fluid turbulence levels. The highest increase in the Nusselt number is found to be about 2.082 times higher than that of the smooth duct for A = 0.1 and WL = 0.453 at Re = 6000. The maximum rise in friction factor is about 2.568 times that of the smooth duct at Re = 6000 for the configuration of WL = 0.113 and A = 0.1. The configuration having A = 0.1 and WL = 0.453 can be particularly useful for lower flow rate requirements and exhibits the highest thermal enhancement factor (TEF) of about 1.612 at Re = 6000 among all the configurations considered in the present study. However, the configuration having A = 0.05 and WL = 0.453 provides a relatively steady TEF performance for a wider range of flow rates with a maximum TEF of 1.473 at Re = 12,000.
AB - Enhancement of heat transfer in solar air heater systems using corrugations has the dual benefit of enhanced heat transfer area and enhanced flow turbulence. This work presents two-dimensional computational fluid dynamics (CFD) analysis to evaluate the effect of discrete triangle wave corrugations on the absorber plate for different flow Reynolds numbers of 6000–24000. The geometric parameters of corrugation such as the non-dimensional amplitude (A = 0.025, 0.05 and 0.1) and non-dimensional wavelength (WL = 0.113, 0.226 and 0.453) are varied to establish the thermo-hydraulic performance. The CFD results reveal that the presence of discrete triangle wave corrugations significantly affect the flow structure near the absorber surface and exhibit enhanced fluid turbulence levels. The highest increase in the Nusselt number is found to be about 2.082 times higher than that of the smooth duct for A = 0.1 and WL = 0.453 at Re = 6000. The maximum rise in friction factor is about 2.568 times that of the smooth duct at Re = 6000 for the configuration of WL = 0.113 and A = 0.1. The configuration having A = 0.1 and WL = 0.453 can be particularly useful for lower flow rate requirements and exhibits the highest thermal enhancement factor (TEF) of about 1.612 at Re = 6000 among all the configurations considered in the present study. However, the configuration having A = 0.05 and WL = 0.453 provides a relatively steady TEF performance for a wider range of flow rates with a maximum TEF of 1.473 at Re = 12,000.
UR - http://www.scopus.com/inward/record.url?scp=85127378079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127378079&partnerID=8YFLogxK
U2 - 10.1080/23311916.2022.2051312
DO - 10.1080/23311916.2022.2051312
M3 - Article
AN - SCOPUS:85127378079
SN - 2331-1916
VL - 9
JO - Cogent Engineering
JF - Cogent Engineering
IS - 1
M1 - 2051312
ER -