Operation and control of multiple electric vehicle load profiles in bipolar microgrid with photovoltaic and battery energy systems

K. S. Nisha*, Dattatraya N. Gaonkar, N. S. Jayalakshmi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Charging of electric vehicles is going to be a major electrical load in the near future, as more and more population shift to electric auto-motives from conventional internal combusted engine-powered vehicles. Integration of electric vehicle charging stations (EVCS) might even burden the existing grid to a point of collapse or grid failure. Establishing charging stations interfaced with bipolar DC microgrids along the roads and highways is the most realistic and feasible solution to avoid the overburdening of the existing power system. The bipolar DC microgrid is a far better microgrid structure than the unipolar microgrid structure in many aspects like reliability, flexibility, and controllability. It can provide multiple voltage level interfaces according to the load demands, which is very apt for different charging levels of electric vehicles (EVs). Operation of multiple sources and multiple loads connected to bipolar DC microgrid will affect DC voltage regulation, capacitance-voltage balancing, and overall stable operation of the grid. In order to mitigate these power quality problems arising in multi-node bipolar DC microgrids, a decentralized model predictive control is proposed in this paper. EV charging load profiles are modeled and developed by considering standard driving cycles, state of charge, and power demand of multiple vehicles to study the effect of unpredictable varying EV loads in the bipolar DC microgrid. EVCS thus modeled are connected to solar photovoltaic-battery energy storage fed bipolar DC microgrid with three-level/bipolar converters and analyzed under dynamic conditions for capacitance–voltage unbalance mitigation, voltage regulation, and the stability of operation with model predictive control. Simulation studies are carried out in MATLAB/Simulink to verify the effectiveness of the system.

Original languageEnglish
Article number106261
JournalJournal of Energy Storage
Volume57
DOIs
Publication statusPublished - 01-2023

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Operation and control of multiple electric vehicle load profiles in bipolar microgrid with photovoltaic and battery energy systems'. Together they form a unique fingerprint.

Cite this