TY - JOUR
T1 - Optimization of distribution network operating parameters in grid tied microgrid with electric vehicle charging station placement and sizing in the presence of uncertainties
AU - K. K, Nandini
AU - N. S, Jayalakshmi
AU - Jadoun, Vinay Kumar
N1 - Publisher Copyright:
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2023
Y1 - 2023
N2 - The power generated by renewable sources is prone to uncertainties which encourages to perform effective modelling to ensure the reliable operation of the grid-connected microgrid (MG) system. This work focuses on the uncertainty modelling of primary sources of solar power, wind power and electric vehicle (EV) load considering three factors battery capacity, state of charge (SoC) and type of EVs charged by employing Monte-Carlo Simulation (MCS) to minimize the distribution system's voltage stability, reliability and power loss (VRP) index. The objective function is tested on the modified IEEE-33 bus distribution system under three diverse scenarios with optimum sizing and placement of RESs and EVCS. To obtain optimal solutions for the proposed problem in a reasonable computation time, modified version of teaching and learning-based optimization (TLBO) and the JAYA algorithm are applied as the rate of convergence is superior to other existing methods in the literature and does not require any precise control parameters. For all the scenarios, it can be seen that the modified JAYA algorithm outperforms TLBO and other existing approaches. The findings of the results reveal the efficacy of uncertainty modelling in a proposed grid-connected DC MG to curtail the VRP index.
AB - The power generated by renewable sources is prone to uncertainties which encourages to perform effective modelling to ensure the reliable operation of the grid-connected microgrid (MG) system. This work focuses on the uncertainty modelling of primary sources of solar power, wind power and electric vehicle (EV) load considering three factors battery capacity, state of charge (SoC) and type of EVs charged by employing Monte-Carlo Simulation (MCS) to minimize the distribution system's voltage stability, reliability and power loss (VRP) index. The objective function is tested on the modified IEEE-33 bus distribution system under three diverse scenarios with optimum sizing and placement of RESs and EVCS. To obtain optimal solutions for the proposed problem in a reasonable computation time, modified version of teaching and learning-based optimization (TLBO) and the JAYA algorithm are applied as the rate of convergence is superior to other existing methods in the literature and does not require any precise control parameters. For all the scenarios, it can be seen that the modified JAYA algorithm outperforms TLBO and other existing approaches. The findings of the results reveal the efficacy of uncertainty modelling in a proposed grid-connected DC MG to curtail the VRP index.
UR - http://www.scopus.com/inward/record.url?scp=85177603219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85177603219&partnerID=8YFLogxK
U2 - 10.1080/15435075.2023.2281334
DO - 10.1080/15435075.2023.2281334
M3 - Article
AN - SCOPUS:85177603219
SN - 1543-5075
JO - International Journal of Green Energy
JF - International Journal of Green Energy
ER -