Optimizing Edge AI for Tomato Leaf Disease Identification

Anitha Gatla, S. R.V. Prasad Reddy, Deenababu Mandru, Swapna Thouti, J. Kavitha, Ahmed Saad Eddine Souissi, A. S. Veerendra*, R. Srividya, Aymen Flah

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This study addresses the critical challenge of real-time identification of tomato leaf diseases using edge computing. Traditional plant disease detection methods rely on centralized cloud-based solutions that suffer from latency issues and require substantial bandwidth, making them less viable for real-time applications in remote or bandwidth-constrained environments. In response to these limitations, this study proposes an on-the-edge processing framework employing Convolutional Neural Networks (CNNs) to identify tomato diseases. This approach brings computation closer to the data source, reducing latency and conserving bandwidth. This study evaluates various pre-trained models, including MobileNetV2, InceptionV3, ResNet50, and VGG19 against a custom CNN, training and validating them on a comprehensive dataset of tomato leaf images. MobileNetV2 demonstrated exceptional performance, achieving an accuracy of 98.99%. The results highlight the potential of edge AI to revolutionize disease detection in agricultural settings, offering a scalable, efficient, and responsive solution that can be integrated into broader smart farming systems. This approach not only improves disease detection accuracy but can also provide actionable insights and timely alerts to farmers, ultimately contributing to increased crop yields and food security.

Original languageEnglish
Pages (from-to)16061-16068
Number of pages8
JournalEngineering, Technology and Applied Science Research
Volume14
Issue number4
DOIs
Publication statusPublished - 08-2024

All Science Journal Classification (ASJC) codes

  • General Engineering
  • Materials Science (miscellaneous)
  • Signal Processing

Fingerprint

Dive into the research topics of 'Optimizing Edge AI for Tomato Leaf Disease Identification'. Together they form a unique fingerprint.

Cite this